• Title/Summary/Keyword: Environmental control system

Search Result 2,967, Processing Time 0.03 seconds

A Study on the Environmental Control System using Spatial Information in Ubiquitous Housing Environment - focusing on Energy Monitoring System (유비쿼터스 주거환경 환경조절시스템에서 공간정보를 활용한 에너지 모니터링 시스템에 관한 기초 연구)

  • Lee, Ye-Ri;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.193-198
    • /
    • 2009
  • This study focuses on building an effective environmental control system for the ubiquitous housing environment. In order to build an effective environmental control system that will provide a comfortable, pleasant, and convenient environment for residents, information on how people cognize the indoor and outdoor environmental conditions, information on human beings, and information of the space should be studied. Also more studies need to be done in which method would be the best way to integrate these informations that would affect the users in the most positive way. The current environmental control system only carries the information on providing separate information of environmental factors such as light, temperature, humidity, heat, and sound. However, it is difficult to understand the energy efficiency of an architectural element through this system. Therefore, this study proposes an energy monitoring system utilizing spatial information.

  • PDF

Development of an Environmental Control System for Agricultural Storage Facility (상온저장 시설의 환경 제어 시스템 개발)

  • 임종환;현명택
    • Food Science and Preservation
    • /
    • v.4 no.2
    • /
    • pp.101-113
    • /
    • 1997
  • Temperature, relative humidity and ventilation are closely related one another, and they are the main factors to be controlled for the environmental control system of a storage facility. Conventional environmental control systems do not consider the interrelationship between temperature, relative humidity and ventilation, which results in low performance and high energy consumption. To overcome the inefficiency of the conventional ones, it was developed an on-off control system based on the interrelationship between the factors. The usefulness of the system was illustrated with the results produced by a set of experiments in a real world.

  • PDF

Development of a Multipurpose-Oriented Environmental Prediction Model for Plant Production System - Construction of the Basic System and its Application - (식물생산시스템의 다목적 환경예측 모델의 개발 -기본 시스템 구축 및 응용-)

  • 손정익;이동근;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.126-135
    • /
    • 1993
  • Recently, the characteristic of plant production systems in Korea has been changed with the strong trends of integration and large scale, using environmental control techniques. To satisfy this change successfully, first of all, the environmental prediction inside the system must be preceded. While many environmental prediction models for plant production system were developed by many persons, each model cannot be applied to the every situation without the perfect understanding of source codes and the technical modification. The purpose of this study is building the environmental prediction model to predict and evaluate the environment inside the system numerically, and also developing the multipurpose program available for practical design. The model consisted of the basic system model, the cultivation related model and the environmental control related model. The contents of each model are as follows : the basic system model is dealing with thermal and light environments, soil environment and ventilation : the cultivation related model with soil and hydroponic cultures ; and the environmental control related model with thermal curtain and heat exchanging system. The environmental prediction model was developed using a common simulation program, PCSMP, so that it could be easily understood and modified by anyone. Finally, the model was executed and verified through comparison between simulated and measured results for soil culture, and both results showed good agreements.

  • PDF

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.

Simulation on the characteristics of the control system of an environmental control facility (실내환경조절설비의 제어시스템 특성에 관한 시뮬레이션)

  • 이종석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.251-259
    • /
    • 1998
  • Environmental control facilities are used to simulate an environment or combination of environments under which many kinds of research and tests can be performed. The design of the control system to maintain desired environmental conditions is essential to proper operation of the facility. A simulation model of the facility has been developed by analyzing each component of the system thermodynamically with necessary properties and heat transfer relations. Using the system simulation model, the required characteristics of the control system has been investigated. PI controller is considered as the most probable controller for this kind of the facility, and electric heater power is shown as the Proper manipulated variable for temperature control.

  • PDF

Simulation on the Characteristics of the Control System of an Environmental Control Facility

  • Lee, Jong-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.62-72
    • /
    • 2000
  • Environmental control facilities are used to simulate an environment or combination of environments under which many kinds of research and tests can be performed. The design of the control system to maintain desired environmental conditions is essential to proper operation of the facility. A simulation model of the facility has been developed by analyzing each component of the system thermodynamically. with necessary properties and heat transfer relations. Using the system simulation model, the required characteristics of the control system has been investigated. PI controller is considered as the most probable controller for this kind of the facility, and electric heater power is shown as the proper manipulated variable for temperature control.

  • PDF

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

A Study on the Development of Greenhouse Management System Based on Internet (인터넷 온실경영관리시스템 개발에 관한 연구)

  • Shim, Keun-Seop;Kang, Jeong-Ok;Lee, Hee-Ju
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.1
    • /
    • pp.191-207
    • /
    • 2004
  • This study was focused on the development of greenhouse management and environmental control system using internet. The essence of this system were remote automatic control unit connected with greenhouse environmental control according to the growth stages of crops, The specific objectives of the study were; 1) to analyze need of greenhouse environmental remote control system, 2) to investigate the important functions related to greenhouse management program, 3) to explore the possibility of diffusing the system using internet.The study was carried out through review of related literature and need assessment from the research and extension workers in charge of greenhouse management using questionnaire survey, interview and field study. The results of the study were summarized as fallows: 1) About 89% of respondents responded positively on the need to establish automatic control system using internet. 2) The greenhouse management and environmental control system using internet was possible to control the greenhouse in remote, automatic, and simultaneous manner, and additionally by cellular phone in emergent situation. 3) The system was possible to precisely control the greenhouse environment, and it was able to connect the environmental control data with information on growth of crops. 4) By networking the farmer, extension educator of agricultural technology center and researcher, web based farm consulting was possible through the system. Based on the results of the study recommendations were suggested as follows: 1) Thorough spot inspections and field trials should be performed before the diffusion of this system. 2) The costs of the system installation and maintenance should be moderate. 3) The operation of the system should be simple and easy for tamers to adopt. 4) National support should be made to build better internet infrastructure in rural areas.

  • PDF

Removal Nitrogen and Phosphorus using Intelligent auto control system

  • Kim, Young-Gyu;Chong, Young-Guin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.147-149
    • /
    • 2003
  • Automatic monitoring and controling system, especially DO and MLSS was faciliated for the nitrogen and phosphorus removal efficiencies. Removal efficiency of nitrogen and phosphorus by automatic monitoring and controling system, especially DO and SRT was have well adopted. and so it will be possible to use artificial intelligence logic control software such as fuzzy or neuro logic control system for WWT Plant.

  • PDF

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.