• Title/Summary/Keyword: Environmental clone

Search Result 140, Processing Time 0.026 seconds

In vitro Propagation and Ex vitro Rooting of Tectona grandis (L.f ), APNBV-1 Clone

  • Ramesh, Kommalapati;Chandra, Mouli Kalla;Vijaya, Tartte
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • An efficient in vitro plant regeneration system was developed through shoot proliferation from axillary buds of Tectona grandis (L.f), APNBV-1 (Andhra Pradesh North Badrachalam Venkatapuram-1) clone. Multiple shoots of high quality were produced in vitro from axillary bud explants. An average of 4.39 shoots/explant were obtained on Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) benzyl amino purine (BA), kinetin (KN), indole acetic acid (IAA), gibberillic acid ($GA_3$), growth adjuvants casein hydrolysate (CH), adenine sulphate (Ads) and antioxidants ascorbic acid, polyvinyl pyrrollidine (PVP). Eighty five percent of rooting was observed in ex vitro rooting media containing IBA and vermiculite. In ex vitro rooting, single shoots with 2 to 3 nodes were subjected to IBA of different concentrations at different periods of time intervals. Direct rooting in vermiculite at 500 ppm concentration of IBA resulted in 4.3 number of roots with 2 cm length. Minimum response of rooting and length of roots were recorded at 100 ppm concentration of IBA. Planlets were transferred to plastic bags for short acclimatization stage in green house where they survived at 95%.

  • PDF

Component Analysis of Acorns of Quercus mongolica and Quercus Variabilis

  • Lee, Hyunseok;An, Chanhoon;Han, Sangurk;Lee, Wiyoung;Jang, Kyunghwan
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.103-112
    • /
    • 2016
  • To compare seed components of plus trees, seed powder ground after seedcoat removal was analyzed for two oak species, i. e., Quercus monglica (white oak) and Quercus variabilis (red oak), which are typical oak trees in Korea but have different fruiting characteristics. Thus we aimed at analyzing and comparing many ingredients including minerals, sugars, etc. Two species were similar to each other in the content of water, crude ash, crude protein and carbohydrates, but crude lipid content in Q. variabilis was 2.5 times higher than that in Q. mongolica. Crude proteins of Clone 124 was 1.5 times higher than that of Clone 75 in Q. mongolica. Crude lipid content showed the highest value in Clone 0511 of Q. variabilis, and more phosphate and iron was found in Q. monglica than in Q. variabilis. Glucose showed 85.4% and 88.3% on average of the total monosacchrides in two species, and galactose and arabinose were also found. In the content of phosphate, iron, and crude lipid, differences were found between two species and among clones of two species.

Molecular Characterization of an Apple cDNA Encoding Cinnamyl Alcohol Dehydrogenase

  • Kim, Sung-Hyun;Lee, Jae-Rin;Shin, Yong-Uk;An, Gyn-Heung;Kim, Seong-Ryong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.475-481
    • /
    • 1999
  • The study of lignin, a major component of secondary cell wall, has been partly focused on its removal from the woody part in the kraft pulping industry. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.l95) catalyzes the synthesis of cinnamyl alcohols from corresponding cinnamaldehydes. A cDNA clone, MdCADl, encoding putative CAD from apples (Malus domestica Borkh. cv Fuji) was characterized in this study. The clone contains an open reading frame of 325 amino acid residues, which shows a greater than 80% identity with Eucalyptus CADl. MdCADl mRNA was detectable in vegetative tissues and was strongly expressed in the fruit. The expression pattern of MdCADl mRNA in the fruit peel after light exposure was also examined. The mRNA was rapidly increased until 1 day after light exposure and remained stable thereafter, suggesting that MdCADl is light inducible. The inducibility of the MdCADl gene was examined using several environmental stresses. Mechanical wounding of leaves increased the MdCADl mRNA level and the induction was further increased by salicylic acid. Southern blot hybridization showed that there is either one or a few copies of CAD genes in apples. To our knowledge, it is believed that MdCADl is the first CAD clone expressed predominantly in fruit.

  • PDF

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik;Kwon, Soon-Wo;Jordan, Fiona;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.

Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater (고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석)

  • Lee, Jae-Won;Kim, Byung-Hyuk;Park, Yong-Seok;Song, Young-Chae;Koh, Sung-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • In this study, a wastewater treatment system for hypersaline wastewater utilizing the Hypersaline Wastewater Treatment Community (HWTC) has been developed. The hypersaline wastewater treatment efficiency and microbial community of the HWTC were investigated. The average removal efficiencies of chemical oxygen demand were 84% in an HRT of 2.5 days. Microbial community analysis, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments and 16S rRNA gene clone library, revealed community diversity. The 16S rRNA gene analysis of dominant microbial bacteria in 4% hypersaline wastewater confirmed the presence of Halomonas sp. and Paenibacillus sp. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the HWTC was ${\gamma}$-proteobacteria and firmicutes. These results indicate the possibility that an appropriate hypersaline wastewater treatment system can be designed using acclimated sludge with a halophilic community.

Isolation and Characterization of Dehydrin 1 (Dhn1) gene from Codonopsis lanceolata (더덕의 주근에서 유래한 Dehydrin 1 (Dhn1) 유전자의 분리 및 분석)

  • Lee, Kang;Yang, Duk-Chun
    • Korean Journal of Plant Resources
    • /
    • v.16 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • During the life cycle, plants have to suffer from various environmental stresses. A common element in response to many environmental stresses is cellular dehydration. Dehydrins are a family of proteins commonly induced by environmental stresses associated with low temperature or dehydration and during seed maturation drying. For the study in the defense mechanism against various stresses, a cDNA clone encoding a dehydrin gene was isolated from a cDNA library prepared from tab root mRNAs of Codonopsis lanceolata. The cDNA, designated ClDhn1, is 893 nucleotides long and has an open reading frame of 480 bp with a deduced amino acid sequence of 159 residues. The ClDhn1 amino acid sequence is highly hydrophilic and possesses two conserved repeats of characterized lysine­rich K­segment (KIKEKLPG), and a 7­serine residue stretch prior to the first lysine­rich repeat that is common to many dehydrins. The DEYGNP conserved motif is, however, modified in the sequence of ClDhn1 gene. The deduced amino acid sequence of ClDhn1 was compared with other plant dehydrinls and showed high homology with Solanum commersonii

Redundancy Analysis Demonstration of the Relevance of Temperature to Ammonia-Oxidizing Bacterial Community Compositions in a Full-Scale Nitrifying Bioreactor Treating Saline Wastewater

  • Park, Hee-Deung;Lee, Seung-Yong;Hwang, Seok-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.346-350
    • /
    • 2009
  • Although salt is known to influence the performance of nitrification significantly, it has not been well reported on how salt affects ammonia-oxidizing bacterial(AOB) community compositions and dynamics in wastewater treatment bioreactors. In this study, these questions were evaluated in a full-scale bioreactor treating saline wastewater. Clone library analysis for the ammonia monooxygenase subunit A gene revealed that AOB belonging to the Nitrosomonas europaea and the N. oligotropha lineages inhabited in the bioreactor. Terminal restriction fragment length polymorphism analysis for monthly samples demonstrated a fluctuation pattern among AOB populations, although AOB within the N. europaea lineage were dominant during the test period. Correlation analysis between patterns of terminal restriction fragments and environmental variables suggested that sodium, chloride, and sulfate were less important; rather, temperature was the most significant factor affecting the AOB community in the bioreactor.