• Title/Summary/Keyword: Environmental and economic benefits

Search Result 355, Processing Time 0.025 seconds

Haussmann's Urban Green Space System in Paris' The Efficacities and the Logic of the Green Politics (오스만의 파리시 도심녹지시스템 : 그 효용성과 녹지정책의 논리)

  • 견진현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.1-12
    • /
    • 2003
  • The urban park provides a safe rest and leisure area, and offers the beauty of nature to counter the drearyness of urban space. It can provide benefits such as the reduction of environmental pollution, the regulation of the local climate, and it can also provide a safe area during times of disaster. However, there was no interest in urban park development and control in Korea during the economic boom of the mid 1960s. Furthermore, during the industrialization process, the population grew significantly in the cities and the cities' scales were noticeably extended; as a result of this, the living environment and the natural environment in the cities worsened. With rapid urbanization and industrialization, urban green area diminished, and it became necessary to organize the urban park system to improve quality of life. 45% of south korea's population lives in 6 cities, which is only 4% of Korea's land size. The Urban park system has to be considered in the urban planning process. Paris' urban green system can be a role-model for Korea's urban green development plan to function organically. Urban public park concepts have been used in Paris's urban planning since 1850. There were hardly any parks, gardens and squares for the public before the middle of the 19th century. For improving life-styles for the poor, Napoleon III strongly supported the development of green space systems in Paris by G.E. Haussmann. Napoleon III and Haussmann established and applied the urban green regulation within Paris urban planning. The purpose of this study is to investigate the green regulations Haussmann's Paris urban plan and urban green space system: and as a result of this, it can be an indicator for urban green space development in Korea.

A Study on Human Resources Management for Hotel Kitchen (호텔주방 인적자원관리 방안에 관한 연구 -서울지역 특급호텔 중심으로-)

  • 엄영호
    • Culinary science and hospitality research
    • /
    • v.7 no.2
    • /
    • pp.25-48
    • /
    • 2001
  • Since 1998 IMF economic crisis, hotel companys have made an operation innovation in generally to reinforce a competitive power. Never ther less, a structural depression with high expense of costs-low degree of efficiency and high price of commodities-low degree of growth during the last few years. And hotel companys were doing endeavor for conquer this depression with reshuffle of the personnal system and that systematizing an enterprise and production control. Hotel has more increase personnel expenses percents than increase sold price percents so that hotel reducing cook and as result, hotel has a problem from production selling of foodservice because that is insufficient of cook man power. On studying this research, an importancy of cusine department in inquire hotel and an efficiency man power control of cusine department influence on hotel marketing were made use of analysis for hotel kitchen management. The result of this study is like that. First, the quality of a hotel employee is directly related to that of hotel service, which is functioned as a principle factor on which success or failure of tie hotel very largely depends, Second, fair evaluation of merits. Third, cognition for job as expert. Fourth, the roles and competences of the employees were affected much by the inner or outer environmental changes surrounding the hotel enterprises. Fifth, do not underestimate an intelligent ability and will power of employee, and hotel company have to manage that the employees consult themselves about their things of department and improve with the master sense for job. Sixth, pay increase and intensive system. This system can raise the will to achievement for employee's job, and company can get many benefits from government. Seventh, the employees should be encouraged to have memberships of academic organizations, to actively participate in academic meetings, workshops, conferences, and forums in the area of job performance.

  • PDF

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Reuses Of Wash Water Effluents Of The Ion-Exchanger Units Of Water Demineralization Plant For Economic And Environmental Benefits

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-806
    • /
    • 1995
  • In industrial field, a large volume of regenerants (acid and caustic soda) and their washing effluents are regularly disposed off from the water demineralization plant during regeneration of the ion-exchanger units. Of these waste effluents, a part of the wash water discharged from the single bed Anion and Mixed Bed units can be utilized at a certain stage of their washing cycles when its conductivity is fallen down and becomes considerably less than that of the input raw water. The main aim of this specific waste effluent utilization is to dilute the TDS concentration of the input raw water (fed into the single bed ion-exchanger units) by blending. The achievement is the increase of the longevity of the production cycles of the I.E. units along with the improvement of the production quality and decrease of the regeneration frequencies. As a result, regenerant consumption would be saved because of the reduction of ionic load in feed water which will ultimately reduce the water purification cost. At the same time, the environment pollution will also be protected to a considerable extent. This operational measure is quite effective and useful specially where high TDS water is demineralized only by single bed ion-exchangers. In such case, the water treatment plant is very often found to suffer from both production quality and quantity in addition to carrying out of random and restless regenerations. Proper reuses of the aforesaid wash water effluents of the Anion and MB units excellently minimizes the difficulties experienced in practice. This paper contains the utilities and techniques of reuses of the different kinds of waste effluents of the industrial water treatment plant in addition to the specific reuses of the post-regeneration wash waters of the Anion and MB ion-exchanger units.

  • PDF

A Study on the Role of Library for Realizing Sharing Value in a Sharing Economy Era (공유경제시대에서 도서관의 공유가치 실현을 위한 역할 도출에 관한 연구)

  • Noh, Younghee;Jeong, Dae-Keun;Ro, Ji-Yoon
    • Journal of Korean Library and Information Science Society
    • /
    • v.49 no.3
    • /
    • pp.133-168
    • /
    • 2018
  • The study aims to present function and role of the library in the age of sharing economy. For this purpose, through theoretical discussion and review of the characteristics and benefits of the sharing economy, the potential and value of a sharing economy were analyzed and the role of libraries was compared and analyzed in terms of the value of a sharing economy. In this study, the values created from the sharing economy were divided into five categories: Economic value, Social value, Community value, Technical value, and Environmental value, showing that the potential value of a sharing economy is similar to the role, function and value of a library. Based on this, it presented a function and role to realize the sharing value of a library in the era of a sharing economy.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates

  • Sharath, S.;Gayana, B.C.;Reddy, Krishna R.;Chandar, K. Ram
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2019
  • Substitution of natural fine aggregates with industrial by-products like precious slag balls (PS Balls) offers various advantages like technical, economic and environmental which are very important in the present era of sustainability in construction industry. PS balls are manufactured by subjecting steel slag to slag atomizing Technology (SAT) which imparts them the desirable characteristics of fine aggregates. The main objective of this research paper is to assess the feasibility of producing good quality concrete by using PS balls, to identify the potential benefits by their incorporation and to provide solution for increasing their utilization in concrete applications. The study investigates the effect of PS balls as partial replacement of fine aggregates in various percentages (20%, 40%, 60%, 80% and 100%) on mechanical properties of concrete such as compressive strength, splitting tensile strength, and flexural strength. The optimum mix was found to be at 40% replacement of PS balls with maximum strength of 62.89 MPa at 28 days curing. Permeability of concrete was performed and it resulted in a more durable concrete with replacement of PS balls at 40% and 100% as fine aggregates. These two specific values were considered as optimum replacement is 40% and also the maximum possible replacement is 100%. Scanning electron microscope (SEM) analysis was done and it was found that the PS balls in concrete were unaffected and with optimum percentage of PS balls as fine aggregates in concrete resulted in good strength and less cracks. Hence, it is possible to produce good workable concrete with low water to cement ratio and higher strength concrete by incorporating PS balls.

Current Status and future of Vermicomposting Industry in Korea (지렁이 퇴비화 운영사례 및 개선방향)

  • Kim, Jong-Oh;Lee, Chang-Ho;Choi, Hun-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.89-98
    • /
    • 2001
  • Present vermicomposting technology needs the broad land. Because of the high land cost, the land saving technology such as multistage must be needed. And present operation practices are mostly based on human power, mechanization and automation is needed. Also, present control practices based on individual experience need the scientific base control system. Even though the rough estimation of organic waste treatment showed that vermicompostiong could obtain more benefits than costs. But, the estimation is based on an ideal case without considering the technical and market. Generally, vermicomposting is considered as the more expensive technology than composting. Therefore, the practical proof the economic factor would be the most important to the market increase. Vermicomposting as the recycling technology has better condition than incineration and landfill. Propagation and advocating focused on its environmentally sound aspects would be needed continuously. Especially, demonstration and distribution of household vermicomposting would be a good approach. Vermicomposting facilities area was becoming larger, and earthworm feeding materials were also expanding to various organic sludges. These trends showed that vermicomposting is being enlightened to treat and recycle the organic wastes.

  • PDF

Recycling of the Waste Rock and Tailings from Yangyang Iron Mine (양양철광산 선광 부산물의 순환자원화)

  • Jung, Moon Young;An, Yong Hyeon;Kim, Young Hun
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.23-31
    • /
    • 2016
  • It was found that there was no problem in recycling by-products (waste rock and tailings) from Yangyang iron mine themselves through matter conversion because they are not hazardous according to results of KSLT method. In case of using tailings as sub-materials of cement, it recommended the use of less than 3% tailings dosage not to exceed 0.6% of total alkali ($R_2O$) content based on standard quality of portland cement (KS L 5201). Non sintered eco-brick corresponding to class 1 quality of recycled clay brick (KS I 3013) can replace 15% of cement with tailings and 100% of general fine aggregate with waste rock from iron mine. As mentioned above, recycling the by-products (waste rock and tailings) as sub-materials of cement and non sintered eco-brick could gain both environmental and economic benefits, that is, reduction of scale and maintenance cost of tailing ponds, decrease of energy use and $CO_2$ emission.

Analysis of the Impact of Transmission Towers on the Performance of RF Scanners for Drone Detection (드론탐지용 RF스캐너의 성능에 송전탑이 미치는 영향 분석)

  • Moon-Hee Lee;Jeong-Ju Bang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.112-122
    • /
    • 2024
  • Recently, as unmanned aerial vehicle technology such as drones has developed, there are many environmental, social and economic benefits, but if there is malicious intent against important national facilities such as airports, public institutions, power plants, and the military, it can seriously affect national safety and people's lives. It can cause damage. To respond to these drone threats, attempts are being made to introduce detection equipment such as RF scanners. In particular, power transmission towers installed in substations, power plants, and Korea's power system can affect detection performance if the transmission tower is located in the RF scanner detection path. In the experiment, a commercial drone was used to measure the signal intensity emitted from the drone and confirm the attenuation rate. The average and maximum attenuation rates showed similar trends in the 2.4 GHz and 5.8 GHz bands, and were also affected by the density of the structure.