• Title/Summary/Keyword: Environmental Water

Search Result 19,208, Processing Time 0.038 seconds

A Method of River Environmental Impact Assessment using LCA (LCA를 적용한 하천환경영향평가 방법)

  • Kim, Sung-Joon;Jin, Ming-Ji;Jeon, Yong-Tae;Shin, Seon-Mi;Choe, Yong-Seung;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.93-104
    • /
    • 2012
  • In this research LCA methodology was adapted and analyzed in quantifying estimation of estuarine environment. The analysed objects of estuarine environment were construction methods, facility, and input material into water, and estuarine ecosystem. In this research the function of LCA of estuarine environment was river with the view of controling water, utilizing water, and hydrophilic function. According to the result of research, environmental damage indicator of facility was decreased 346 Pt from 453 Pt at pre-maintenance to 107 pt at post-maintenance. Among raw and subsidiary materials, remicon, stone-netting bag, and pebbles were showing heavy environmental load in the order. Evironmental impact of input material into water system was analyzed from 1,827 Pt environmental load before construction to 1,080 Pt of post-maintenance, and damage indicator was improved at 747 Pt. Water quality was improved from 1,827 Pt (before construction) to 1,080 Pt(after construction), and ecosystem was improved after maintenance. Environmental indicator in ecosystem was analyzed 427 Pt(before construction) to 348 Pt(after construction), and damage indicator of Sumnjingang riverine system was improved as much as 79 Pt. In the conclusion, estuarine environmental monitoring through LCA in the area of facility, input material into water and ecosystem showed that close-to-nature stream was 1,172 Pt better than artificial stream in environmental aspects.

A Study on the Establishment of Water Circulation System for the Eastern Pangyo New Town (동판교 신도시의 물순환 체계 구축방안)

  • Choi, Hee-Sun;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.49-58
    • /
    • 2009
  • This study was done to provide a case model with a concept of environmental integration based on the water circulation system. Area of interest (AOI) is the Eastern Pangyo New Town area, which has several advantages in adaptation of a water circulation system. The AOI has a potential of maintaining water resources, and has a good condition to construct the water circulation system. Research done for the purpose of the establishment of the water circulation system in the Eastern Pangyo New Town shows the following. The main sources of water supply in the water circulation system in the Eastern Pangyo New Town is from two subway stations and runoff water, along with the natural water flowing from the mountains, rain water, and stream water. It was determined that more than 35,000 tons of water would be needed for the creation of water circulation system at the Eastern Pangyo. If the creation of infrastructure for the use of runoff and rain water as well as the periodic management can be provided, it can serve as the new model for a new city with water circulation system. In addition, since the Eastern Pangyo New Town water circulation system can secure enough amount of water resources, natural drainage system (NDS) in which it can be in dry condition in non-rainy days, is applied and connected to the typical waterways. Such water circulation system has many positive aspects including the wise use of water resources, and providing wild Life animals corridors and habitats. Also, the water circulation system can lead to the environmental education to the residents and visitors on environmental awareness of the water circulation system and their environment.

A mini-review on microplastics in drinking water treatment processes (정수처리장 내의 미세플라스틱의 유입 및 처리기술 현황에 관한 고찰)

  • Choi, Byeonggyu;Kim, Jiyoon;Choi, Soohoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.357-371
    • /
    • 2020
  • Microplastics have become a rising issue in due to its detection in oceans, rivers, and tap water. Although a large number of studies have been conducted on the detection and quantification in various water bodies, the number of research conducted on the removal and treatment of microplastics are still comparatively low. In the current research, the inflow and removal of microplastics were investigated for various drinking water treatment plants around the world. Addition to the investigation of filed research, a survey was also conducted on the current research trend on microplastic removal for different treatment processes in the drinking water treatment plants. This includes the researches conducted on coagulation/flocculation, sedimentation, dissolved air flotation, sand filtration and disinfection processes. The survey indicated mechanisms of microplastic removal in each process followed by the removal characteristics under various conditions. Limitations of current researches were also mentioned, regarding the gap between the laboratory experimental conditions and field conditions of drinking water treatment plants. We hope that the current review will aid in the understanding of current research needs in the field of microplastic removal in drinking water treatment.