• Title/Summary/Keyword: Environmental Velocity

Search Result 2,247, Processing Time 0.033 seconds

The Effect on Treatment Performance of Fiber Filter Under Various Packing-Density and Filtration Velocity (충진밀도와 여과속도가 섬유사 여과기의 처리 성능에 미치는 영향)

  • Im, Jeong-Hoon;Kim, Hyo-Kwan;Lee, Jung-June;Moon, Tae-Sup;Jeong, Min-Ki;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • A flexile fiber filter developed in Korea was operated to evaluate the effect of packing density and filtration velocity on particle removal. The pilot-scale fiber filter with 40 cm of diameter and 2 m of height was packed with polyamide fibers of which mean diameter was approximately 0.93 mm. While the filtration velocity was maintained at 325 m/hr, the particle removal efficiency was compared with various of packing density from $70kg/m^3\;to\;100kg/m^3$. On the contrary, when the packing density was maintained at $70kg/m^3$, the particle removal efficiency was examined with various filtration velocity from 65 m/hr to 400 m/hr. The filtration pressure increased with the packing-density increase. Below $80kg/m^3$ of packing density, the removal efficiencies of turbidity ad SS were less than 30% and 50%, respectively. At $100kg/m^3$ of packing density, the removal efficiencies of them were nearly 45% and 60% respectively. The filtration pressure increased with the filtration-velocity increase. A better removal efficiency was obtained at a lower filtration velocity, removal efficiency of them were 73% at 65 m/hr. Consequently, The filtration velocity was the more important factor to enhance the particle removal efficiency compared with the packing density in fiber filter.

Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed (장방형 역유동층의 동력학적 특성)

  • 박영식;안갑환
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF

Prediction of the Efficiency of Factors Affecting Pressure Drop in a Pulse Air Jet-type Bag Filter (충격기류식 여과집진장치에서 압력손실에 영향을 주는 인자의 효율예측)

  • Suh, Jeong-Min;Ryu, Jae-Yong;Lim, Woo-Taik;Jung, Moon-Sub;Park, Jeong-Ho;Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.437-446
    • /
    • 2010
  • The pressure drop through pulse air jet-type bag filter is one of the most important factors on the operating cost of bagfilter houses. In this study, the pilot-scale pulse air jet-type bag filter with about 6 m2 filtration area was designed and tested for investigating the effects of the four operating conditions on the total pressure drop, using the coke dust collected from a steel mill factory. When the face velocity is higher than 2 m/min, it is not applicable to on-spot due to the increase of power expenses resulting from a high-pressure drop, and thus, 1.5 m/min is considered to be reasonable. The regression analysis results show that the degree of effects of independent parameters is a order of face velocity > concentration > time > pressure. The results of SPSS answer tree analysis also reveal that the operation time affects the pressure drop greatly in case of 1 m/min of face velocity, while the inlet concentration affects the pressure drop in case of face velocity more than 1.5 m/min.

A Basic Study on the Utilization of Kitchen and Bathroom Exhaust Wind Velocity in High-Rise Apartment (초고층 공동주택의 주방.욕실 배기풍속 활용을 위한 기초연구)

  • Kim, Seong-Yong;Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.226-231
    • /
    • 2011
  • This study set out to review the air current fluidity in exhaust common ducts by installing an inlet pipe at a leisure space in the PS(Pipe Shaft)room for the sake of wind power generation with kitchen and bathroom exhaust common ducts of all the equipment and air conditioning shafts in high-rise apartment. The air current functionality of kitchen and bathroom exhaust common ducts was reviewed by analyzing wind velocity changes according to changes to the area of exhaust common ducts through a simulation, changes to the wind velocity of the kitchen hood by applying an external inlet pipe, changes to the usage factor of exhaust common ducts, and changes to wind velocity by altering the form of the ventilator at the bottom of the old exhaust common duct. It was a basic study on the utilization of exhaust wind velocity in exhaust common ducts.

  • PDF

The Characteristics of the Dry Deposition Velocity for O3 regarding Surface Wetness (지표면 Wetness에 따른 오존의 건성침적속도 특성)

  • 이화운;김유근;문난경
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.393-397
    • /
    • 2003
  • It has been researched the relationship between deposition velocity and factors which could affect the deposition phenomena and deposition velocity also has been estimated fer several land-use types. The typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants and so on. The canopy resistance is major contribution to the model's total resistance for O₃. Canopy wetness is also an important factor to calculate deposition velocity. We considered the canopy wetness as canopy water content(CWC) in our Model. But, it is not easy to observe CWC over each land-use types. In this study, we use CWC observed by EMEFS(CANADA Environment Service, 1988) to examine the influence of CWC in estimation of 03 dry deposition velocity(V/sub d/) in summertime. The value of O₃ V/sub d/ range 0.2 ∼ 0.7 cm s/sup -1/ on dry surface and 0.01 ∼ 0.35 cm s/sup -1/ on wet surface in daytime.

Measurement of Dry Deposition of Polycyclic Aromatic Hydrocarbons in Jeoniu (전주지역에서 다환방향족 탄화수소의 건식 침적 측정)

  • Kim, Hyoung-Seop;Kim, Jong-Guk;Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.242-249
    • /
    • 2007
  • Deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) were measured at the Chonbuk National University located in Jeonju between June and November 2002. Fluxes of gaseous and particulate PAHs were separately obtained using a water surface sampler (WSS) and a dry deposition plate (DDP). Most of PAHs were deposited in the gaseous form since the low molecular weight PAHs dominates in the atmosphere. The deposition velocity of particulate PAHs was higher than that of gaseous PAHs when the molecular weight was low, but substantially decreased as the fine particle fraction increased with molecular weight. The deposition velocity was generally higher at high wind speeds. However, increase in the deposition velocity in unstable atmospheric conditions was also observed for gaseous PAHs of intermediate molecular weight.

Simple assessment of wind erosion depending on the soil texture and threshold wind velocity in reclaimed tidal flat land

  • Kyo-Suk, Lee;IL-Hwan, Seo;Jae-Eui, Yang;Sang-Phil, Lee;Hyun-Gyu, Jung;Doug Young, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.843-853
    • /
    • 2021
  • The objectives of this paper were to simply estimate soil loss levels as caused by wind in reclaimed tidal flat land (RTFL) and the threshold wind velocity in the RTFL. For this experiment, RTFL located at Haenam Bay was selected and a total of 150 soil samples were collected at the Ap horizon from the five soil series. The particle distribution curves, including the limit of the non-erodible particle size (D > 0.84 mm) for each Ap horizon soil, show that the proportions of non-erodible particle sizes that exceeded 0.84 mm were 4.3% (Taehan, TH), 8.9% (Geangpo, GP), 0.5% (Bokchun, BC), 1.6% (Poseung, PS) and 1.4% (Junbook, JB), indicating that the amount of non-erodible soil particles increased with an increase in the sand content. The average monthly, daily and instantaneous wind velocities were higher than the threshold friction velocity (TFV) calculated according to the dynamic velocity (Vd) by Bagnold, while the average monthly wind velocity was lower than those of the TFV suggested by the revised wind erosion equation (RWEQ) and wind erosion prediction system (WEPS). The susceptible proportions of erodible soil particles from the Ap horizon soil samples from each soil series could be significantly influenced by the proportion of sand particles between 0.025 and 0.5 mm (or 0.84 mm) in diameter regardless of the threshold wind velocity. Thus, further investigations are needed to estimate more precisely soil erosion in RTFL, which shows various soil characteristics, as these estimations of soil loss in the five soil series were obtained only when considering wind velocities and soil textures.

Automatic velocity analysis using bootstrapped differential semblance and global search methods (고해상도 속도스펙트럼과 전역탐색법을 이용한 자동속도분석)

  • Choi, Hyung-Wook;Byun, Joong-Moo;Seol, Soon-Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2010
  • The goal of automatic velocity analysis is to extract accurate velocity from voluminous seismic data with efficiency. In this study, we developed an efficient automatic velocity analysis algorithm by using bootstrapped differential semblance (BDS) and Monte Carlo inversion. To estimate more accurate results from automatic velocity analysis, the algorithm we have developed uses BDS, which provides a higher velocity resolution than conventional semblance, as a coherency estimator. In addition, our proposed automatic velocity analysis module is performed with a conditional initial velocity determination step that leads to enhanced efficiency in running time of the module. A new optional root mean square (RMS) velocity constraint, which prevents picking false peaks, is used. The developed automatic velocity analysis module was tested on a synthetic dataset and a marine field dataset from the East Sea, Korea. The stacked sections made using velocity results from our algorithm showed coherent events and improved the quality of the normal moveout-correction result. Moreover, since our algorithm finds interval velocity ($\nu_{int}$) first with interval velocity constraints and then calculates a RMS velocity function from the interval velocity, we can estimate geologically reasonable interval velocities. Boundaries of interval velocities also match well with reflection events in the common midpoint stacked sections.

Determination of Lateral Variations for Pn Velocity Structure Beneath the Korean Peninsula Using Seismic Tomography (지진토모그래피 (Seismic Tomography) 방법을 이용한 한반도 하부 Pn 속도 구조의 수평분포 결정)

  • Kim, So Gu;Lee, Seoung Kyu
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.625-635
    • /
    • 1997
  • A back projection algorithm is applied to 216 Pn travel time measurements to image lateral variations of compressional velocity in the uppermost mantle in the Korean Peninsula. We obtained an average P-velocity value for the uppermost mantle of $7.90{\pm}0.18km/sec$, and an average mantle P-velocity gradient of $5.3{\times}10^{-3}s^{-1}$ for the Korean Peninsula. The final 3-D velocity image in the uppermost mantle is characterized by a low-velocity (about $7.77{\pm}0.12km/sec$) region in the southeast area of the Korean peninsula, which is called 'Kyongsang Basin' and by high-velocity(${\geq}8.08km/sec$) region in the northern area of the Korean Peninsula(Hamkyong and Pyongan provinces). The crustal thicknesses are calculated for the 10 subregions. The crustal thickness of the northern part(${\geq}39^{\circ}N$) of the Korean Peninsula is 33.0-36.0 km, on the contrary, that of the southern part(< $39^{\circ}N$) is 30.7~33.7 km. The velocity image obtained in this study is somewhat consistent with previous S-P travel time studies and gravity studies.

  • PDF