• Title/Summary/Keyword: Environmental Velocity

Search Result 2,262, Processing Time 0.034 seconds

A simple approach to refraction statics with the Generalized Reciprocal Method and the Refraction Convolution Section (GRM과 RCS 방법을 이용한 굴절파 정적 시간차를 구하는 간단한 방법)

  • Palmer Derecke;Jones Leonie
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We derive refraction statics for seismic data recorded in a hard rock terrain, in which there are large and rapid variations in the depth of weathering. The statics corrections range from less than 10 ms to more than 70 ms, often over distances as short as 12 receiver intervals. This study is another demonstration of the importance in obtaining accurate initial refraction models of the weathering in hard rock terrains in which automatic residual statics may fail. We show that the statics values computed with a simple model of the weathering using the Generalized Reciprocal Method (GRM) and the Refraction Convolution Section (RCS) are comparable in accuracy to those computed with a more complex model of the weathering, using least-mean-squares inversion with the conjugate gradient algorithm (Taner et al., 1998). The differences in statics values between the GRM model and that of Taner et al. (1998) systematically vary from an average of 2ms to 4ms over a distance of 8.8 km. The differences between these two refraction models and the final statics model, which includes the automatic residual values, are generally less than 5 ms. The residuals for the GRM model are frequently less than those for the model of Taner et al. (1998). The RCS statics are picked approximately 10 ms later, but their relative accuracy is comparable to that of the GRM statics. The residual statics values show a general correlation with the refraction statics values, and they can be reduced in magnitude by using a lower average seismic velocity in the weathering. These results suggest that inaccurate average seismic velocities in the weathered layer may often be a source of short-wavelength statics, rather than any shortcomings with the inversion algorithms in determining averaged delay times from the traveltimes.

Estimation of Duck House Litter Evaporation Rate Using Machine Learning (기계학습을 활용한 오리사 바닥재 수분 발생량 분석)

  • Kim, Dain;Lee, In-bok;Yeo, Uk-hyeon;Lee, Sang-yeon;Park, Sejun;Decano, Cristina;Kim, Jun-gyu;Choi, Young-bae;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Solmoe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.

Characteristics of carbon dioxide separation using amine functionalized carbon (아민기 개질 탄소를 이용한 이산화탄소 분리 특성)

  • Cha, Wang Seog;Lim, Byeong Jun;Kim, Jun Su;Lee, Sung Youn;Park, Tae Jun;Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2021
  • The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

Material Characteristics, Provenance Interpretation and Deterioration Diagnosis of Shilla Stone Monuments in Jungseongri and Naengsuri, Pohang (포항 중성리신라비와 영일 냉수리신라비의 재질특성과 산지해석 및 훼손도 진단)

  • Lee, Myeong Seong;Han, Min Su;Kim, Jae Hwan;Kim, Sa Dug
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.122-143
    • /
    • 2010
  • The Shilla Stone Monument in Jungseongri was found during the road-construction in Pohang. It has approximately two hundreds of letters inscribed on the surface of one side, and it is estimated to be older than Shilla Stone Monument in Naengsuri which had been known for the oldest stele in Shilla Period. This monument is made of fine to medium-grained biotite granite, while the Shilla Stone Monument in Naengsuri is made of fine-grained granodioritic porphyry bearing feldspar and amphibole phenocrysts. Both rock types of the monuments are interpreted to be cognate with biotite granite in Shinkwangmyeon, and with granodioritic porphyry in Gigyemyeon. They are characterized by xenolith and miarolitic cavity. Damage aspects in both monuments are discoloring, cracking and breaking. These damages do not cause structural instability of the monuments, but attenuate aesthetic value. Black and brown discoloring contaminants on the surface of the Jungseongri Monument contain a high amount of manganese and iron. As a result of ultrasonic test, both monuments were evaluated to be medium-weathered (MW), although the velocity of the Shilla Monument in Jungseongri was slightly lower than the Shilla Monument in Naengsuri. This is because the Monument in Juengseongri had been exposed to outdoor environment for long time until the discovery. It is necessary for Shilla Monuments to be protected by appropriately environmental control and management.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.

Pattern Analysis in East Asian Coasts by using Sea Level Anomaly and Sea Surface Temperature Data (해수면 높이와 해수면 온도 자료를 이용한 동아시아 해역의 패턴 분석)

  • Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.525-532
    • /
    • 2021
  • In the ocean, it is difficult to separate the effects of one cause due to the multiple causes, but the self-organizing map can be analyzed by adding other factors to the cluster result. Therefore, in this study, the results of the clustering of sea level data were applied to sea surface temperature. Sea level data was clustered into a total of 6 nodes. The difference between sea surface temperature and sea level height has a one-month delay, which applied sea surface temperature data a month ago to the clustered results. As a result of comparing the mean of sea surface temperature of 140 to 150°E, where the sea surface temperature was variously distributed, in the case of nodes 1, 3, and 5, it was possible to find a meandering sea surface temperature distribution that is clearly distinguished from the sea level data. While nodes 2, 4 and 6, the sea surface temperature distribution was smooth. In this study, sea surface temperature data were applied to the clustered results of sea level data, but later it is necessary to apply wind or geostrophic velocity data to compare.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

The Effects of Forest Healing Anti-aging Program on Physical Health of the Elderly: A Pilot Study (산림치유 항노화 프로그램이 노인의 신체적 건강에 미치는 효과: 예비연구)

  • Baek, Ji-Eun;Shin, Ho-jin;Kim, Sung-Hyeon;Kim, Jae Yeon;Park, Sujin;Sung, Si-Yoon;Cho, Hwi-young;Hahm, Suk-Chan;Lee, Min-Goo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • PURPOSE: Aging causes a decrease in muscle mass and a change in posture, which reduces motor function and makes it difficult to perform daily activities independently. As these factors are closely related to the deterioration of the quality of life, it is very important to prevent and manage negative changes in the musculoskeletal system. Forest healing is a nature therapy course that maintains and promotes health using various environmental factors in a forest. The purpose of this study was to identify the effects of the forest healing anti-aging programs on the physical health of the elderly. METHODS: Ten elderly people participated in this study, as part of a forest healing anti-aging program for two days. Functional fitness, muscle strength, gait function, and balance were evaluated before and after the program. RESULTS: The number of arm curls, chair stands, and steps in a 2-min walk significantly increased (p < .05). 8-feet up & go time was significantly decreased (p < .05). Biceps brachii, quadriceps femoris, and calf muscle strength were significantly increased (p < .05). Gait velocity and cadence were significantly increased (p < .05). Step length, stride length, step time, swing time, stance time, and cycle time were significantly decreased (p < .05). Reaching distance in the lateral directions was significantly increased (p < .05). CONCLUSION: The forest healing anti-aging program improves the physical health of the elderly.