• Title/Summary/Keyword: Environmental Turbulence

Search Result 272, Processing Time 0.022 seconds

Dynamic characteristics of transmission line conductors and behaviour under turbulent downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.;Hangan, Horia
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.327-346
    • /
    • 2010
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on the assessment of the dynamic behaviour of the line conductors under downburst loading. A non-linear numerical model, accounting for large deformations and the effect of pretension loading, is developed and used to predict the natural frequencies and mode shapes of conductors at various loading stages. A turbulence signal is extracted from a set of full-scale data. It is added to the mean component of the downburst wind field previously evaluated from a CFD analysis. Dynamic analysis is performed using various downburst configurations. The study reveals that the response is affected by the background component, while the resonant component turns to be negligible due large aerodynamic damping of the conductors.

Flow and dispersion around storage tanks -A comparison between numerical and wind tunnel simulations

  • Fothergill, C.E.;Roberts, P.T.;Packwood, A.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.89-100
    • /
    • 2002
  • Accidental gaseous losses from industrial processes can pose considerable health and environmental risks but assessing their health, safety and environmental impact is problematic. Improved understanding and simulation of the dispersion of emissions in the vicinity of storage tanks is required. The present study aims to assess the capability of the turbulence closures and meshing alternatives in a commercially available CFD code for predicting dispersion in the vicinity of cubes and circular cylindrical storage tanks. The performance of the $k-{\varepsilon}$ and Reynolds Stress turbulence models and meshing alternatives for these cases are compared to experimental data. The CFD simulations are very good qualitatively and, in many cases, quantitatively. A mesh with prismatic elements is more accurate than a tetrahedral mesh. Overall the Reynolds stress model performs slightly better than the $k-{\varepsilon}$ model.

Comparison study of turbulent diffusion coefficient using Smagorinsky method and 2-level method (Smagorinsky method와 2-level method를 이용한 난류 확산계수의 비교 연구)

  • 이화운;오은주;정우식;최현정;임주연
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Turbulence greatly influence on atmospheric flow field. In the atmosphere, turbulence is represented as turbulent diffusion coefficients. To estimate turbulent diffusion coefficients in previous studies, it has been used constants or 2-level method which divides surface layer and Ekman layer. In this study, it was introduced Smagorinsky method which estimates turbulent diffusion coefficient not to divide the layer but to continue in vertical direction. We simulated 3-D flow model and TKE equation applied turbulent diffusion coefficients using two methods, respectively. Then we showed the values of TKE and the condition of each term to TKE. The results of Smagorinsky method were reasonable. But the results of 2-level method were not reasonable. Therefor, it had better use Smagorinsky method to estimate turbulent diffusion coefficients. We are expected that if it is developed better TKE equation and model with study of computational method in several turbulent diffusion coefficients for reasonably turbulent diffusion, we will able to predict precise wind field and movements of air pollutants.

NUMERICAL STUDY FOR A SECONDARY CIRCULAR CLARIFIER WITH DENSITY EFFECT

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Sang-Ill;Park, Jong-Woon
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • A computer program is developed for the prediction of the flow pattern and the removal efficiency of suspended solid (SS) in a circular secondary clarifier. In this study the increased density effect by SS on hydrodynamics has been systematically investigated in terms of Froude Number (Fr), baffle existence, and a couple of important empirical models associated with the particle settling and Reynolds stresses. A control-volume based-finite difference method by Patankar is employed together with the SIMPLEC algorithm for the resolution of pressure-velocity coupling. The k-ε turbulence and its modified version are incorporated for the evaluation of Reynolds stresses. The calculation results predicts well the overall flow pattern such as the waterfall phenomenon at the front end of the clarifier and the bottom density current with the formation of strong recirculation especially for the case of decrease of Fr. Even if there are some noticeable differences in the prediction of two turbulence models, the calculated results of the radial velocity profiles are generally in good agreement against experimental data appeared in open literature. Parametric investigation has been systematically made with the Fr and baffle condition with detailed analysis.

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition

  • Cruz Y. Li;Xisheng Lin;Gang Hu;Lei Zhou;Tim K.T. Tse;Yunfei Fu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.191-209
    • /
    • 2023
  • This work investigates the subcritical free-shear prism wake at Re=22,000 by the Koopman analysis using the Dynamic Mode Decomposition (DMD) algorithm. The Koopman model linearized nonlinearities in the stochastic, homogeneous anisotropic turbulent wake, generating temporally orthogonal eigen tuples that carry meaningful, coherent structures. Phenomenological analysis of dominant modes revealed their physical interpretations: Mode 1 renders the mean-field dynamics, Modes 2 describes the roll-up of the Strouhal vortex, Mode 3 describes the Bloor-Gerrard vortex resulting from the Kelvin-Helmholtz instability inside shear layers, its superposition onto the Strouhal vortex, and the concurrent flow entrainment, Modes 6 and 10 describe the low-frequency shedding of turbulent separation bubbles (TSBs) and turbulence production, respectively, which contribute to the beating phenomenon in the lift time history and the flapping motion of shear layers, Modes 4, 5, 7, 8, and 9 are the relatively trivial harmonic excitations. This work demonstrates the Koopman analysis' ability to provide insights into free-shear flows. Its success in subcritical turbulence also serves as an excellent reference for applications in other nonlinear, stochastic systems.

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

Impacts of Capabilities on International Performance in Korean Small Venture Firms : Moderating Effects of Market and Technology Turbulence (한국 중소벤처기업의 역량이 해외진출성과에 미치는 영향: 시장동태성과 기술동태성의 조절효과)

  • Jeong, So Won;Won, Jong-Hyeon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.2
    • /
    • pp.97-105
    • /
    • 2015
  • This study aims to investigate the impacts of small venture firms' capabilities on their international performance and the role of environmental dynamics in these relationships. Specifically, the study examines how international marketing, technology, and network capabilities of small venture firms influence their international performance and how market and technology turbulences moderates these relationships. Employing 162 small venture firms in Korea, the result of multiple regression analysis found that marketing capability did not affect international performance while technology and network capabilities had positive, significant impacts on international performance. Market turbulence was found to have a negative moderation effect on the relationship of network capability and international performance. Technology turbulence had a negative moderation effect on the relationship of technology capability and international performance and a positive moderation effect on the relationship of network capability and international performance. The findings confirm the importance of capabilities in improving the international performance of small venture firms and generate strategic implications for their international success by emphasizing the effect of environmental dynamics.

  • PDF

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.