• 제목/요약/키워드: Environmental Turbulence

검색결과 273건 처리시간 0.026초

Performance Enhancement of 20kW Regenerative Blower Using Design Parameters

  • Jang, Choon-Man;Jeon, Hyun-Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권3호
    • /
    • pp.86-93
    • /
    • 2014
  • This paper describes performance enhancement of a regenerative blower used for a 20 kW fuel cell system. Two design variables, bending angle of an impeller and blade thickness of an impeller tip, which are used to define an impeller shape, are introduced to enhance the blower performance. Internal flow of the regenerative blower has been analyzed with three-dimensional Navier-Stokes equations to obtain the blower performance. General analysis code, CFX, is introduced in the present work. SST turbulence model is employed to estimate the eddy viscosity. Throughout the numerical analysis, it is found that the thickness of impeller tip is effective to increase the blower efficiency in the present blower. Pressure is successfully increased up to 2.8% compared to the reference blower at the design flow condition. And efficiency is also enhanced up to 2.98 % compared to the reference one. It is noted that low velocity region disturbs to make strong recirculation flow inside the blade passages, thus increases local pressure loss. Detailed flow field inside the regenerative blower is also analyzed and compared.

반응기촉매 교체작업시 최적 환기조건에 대한 수치해석적 연구 (A numerical Study on Optimum Ventilation Conditions for the Task of Exchange Catalyst)

  • 윤장근;임용순;신미수
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.190-199
    • /
    • 2018
  • Objectives: The purpose of this case study is to assess the current airflow and find the ideal ventilation conditions in tank reactors for minimizing the possibility of exposure respiratory dusts(size of $2.5{\mu}m$, $10{\mu}m$) when workers exchange catalysts in the tank reactors. Methods: A Numerical study was performed to determine ideal ventilation conditions, We considered two sizes of airborne respiratory particles($2.5{\mu}m$, $10{\mu}m$) at 12points from the bottom of tank reactor. We changed input & output ventilation conditions and analyzed the particle motion in the tank reactor. The star-ccm+, computational fluid dynamics tool was used to predict air & particle flow patterns in the tank reactor and a numerical simulation was achieved by applying the realized ${\kappa}-{\varepsilon}$ turbulence model and the Lagrangian particle tracking method. Results: From the results, the increase of recirculation air had a significant impact on removing dusts because they are removed by HEPA filter. To the contrary, Increasing the clean air quantity or changing the input position of clean air is not good for workers because it causes the exit of respiratory dusts through workers' entrance or cause it to remail suspended in the air in the workplace tank.

도시 지역에서 아파트 단지가 흐름과 확산에 미치는 영향 (Effects of an Apartment Complex on Flow and Dispersion in an Urban Area)

  • 이영수;김재진
    • 대기
    • /
    • 제21권1호
    • /
    • pp.95-108
    • /
    • 2011
  • The effects of an apartment complex on flow and pollutant dispersion in an urban area are numerically investigated using a computational fluid dynamics (CFD) model. The CFD model is based on the Reynolds-averaged Navier-Stokes equations and includes the renormalization group k-${\varepsilon}$ turbulence model. The geographic information system (GIS) data is used as an input data of the CFD model. Eight numerical simulations are carried out for different inflow directions and, for each inflow direction, the effects of an apartment complex are investigated, comparing the characteristics of flow and dispersion before and after construction of the apartment complex in detail. The observation data of automatic weather system (AWS) is analyzed. The windrose analysis shows that the wind speed and direction after the construction of the complex are quite different from those before the construction. The construction of the apartment complex resulted in the decrease in wind speed at the downwind region. It is also shown that the wind speed increased partially inside the apartment complex due to the channeling effect to satisfy the mass continuity. On the whole, the wind speed decreased at the downwind region due to the drag effect by the apartment complex. As a result, the passive pollutant concentration increased (decreased) near the downwind region of (within) the apartment complex compared with that before the construction.

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

On the modeling methods of small-scale piezoelectric wind energy harvesting

  • Zhao, Liya;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.67-90
    • /
    • 2017
  • The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석 (A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements)

  • 이덕근;공민준;유동우
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.349-359
    • /
    • 2016
  • 공용 중인 교량의 버페팅 응답을 해석적으로 평가하기 위해서는 교량 현장의 난류강도, 난류 스펙트럼, 조도계수, 거스트 계수 등 풍하중에 대한 분석이 우선되어야 하고, 해석 결과는 정적 공기력 계수, 플러터계수, 구조 감쇠비, 공기역학적 감쇠비, 고유 진동수 등 여러 변수에 의해 영향을 받는다. 본 논문에서 대상으로 한 교량은 32년째 공용 중에 있는 교량으로써 교량 주변의 지형조건은 설계 및 시공 당시에 비해 많은 변화가 발생하였으며 최근 기후 변화로 인한 풍 환경 역시 큰 변화가 있다. 이러한 이유로 대상교량에서 실측한 풍속 데이터를 분석하여 난류강도, 난류길이, 지표조도계수, 풍속 스펙트럼 등 교량 현장의 풍하중을 평가하였다. 교량 주변의 풍환경 평가 결과, 대상 교량은 해상교량임에도 불구하고 지표조도구분 II의 특성을 나타내고 있었다. 또한 실측한 구조물의 가속도, 변위 응답 데이터를 통해 대상교량의 감쇠비, 정적 공기력 계수, 고유진동수를 평가하여 계측기반 버페팅 해석 변수를 산정하였다. 계측데이터 기반의 해석 변수와 케이블강교량설계지침에 제시된 해석 변수를 적용하여 총 4가지 경우에 대한 버페팅 해석을 수행하였으며, 그 결과 10분 평균 풍속 25m/s이하에서 측정된 버페팅 응답과 계측 기반 해석 변수를 적용한 해석 응답이 가장 잘 일치함을 확인하였고, 계측 풍속과 Gumbel 확률분포를 이용하여 추정한 200년 재현기대 풍속인 45m/s에서의 버페팅 응답을 제시하였다.