• Title/Summary/Keyword: Environmental Testing

Search Result 1,661, Processing Time 0.028 seconds

Current Uses and Research Activity Regarding Non-testing Methods Including (Q)SARs in Various Chemical Regulatory Programs (국외 화학물질 관리 제도 내에서의 (Q)SARs 및 비-시험 방법 사용과 관련 연구 현황)

  • Ha, Mi-Hee;Kim, Sang-Hun
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.261-270
    • /
    • 2009
  • To make measurable regulatory decisions of chemicals, it is necessary to consider their effect on the human health and ecosystem. In principle, this is based on relevant toxicity studies conducted by accepted guidelines. However, current regulatory programs in various countries confront challenges related to risk assessment of large numbers of chemicals within the restricted resources and time. Therefore there is a need for more efficient approach to limit the number of tests to be conducted. This promotes the development of powerful nontesting methods (e.g. (Q)SARs) and permits to use the predicted data for regulatory purpose. In this article, current status of non-testing methods in various chemical regulatory programs was reviewed in terms of their application and research activity on them. Finally, their usefulness associated with development of domestic regulatory program was suggested.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

A framework for distributed analytical and hybrid simulations

  • Kwon, Oh-Sung;Elnashai, Amr S.;Spencer, Billie F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.331-350
    • /
    • 2008
  • A framework for multi-platform analytical and multi-component hybrid (testing-analysis) simulations is described in this paper and illustrated with several application examples. The framework allows the integration of various analytical platforms and geographically distributed experimental facilities into a comprehensive pseudo-dynamic hybrid simulation. The object-oriented architecture of the framework enables easy inclusion of new analysis platforms or experimental models, and the addition of a multitude of auxiliary components, such as data acquisition and camera control. Four application examples are given, namely; (i) multi-platform analysis of a bridge with soil and structural models, (ii) multiplatform, multi-resolution analysis of a high-rise building, (iii) three-site small scale frame hybrid simulation, and (iv) three-site large scale bridge hybrid simulation. These simulations serve as illustrative examples of collaborative research among geographically distributed researchers employing different analysis platforms and testing equipment. The versatility of the framework, ease of including additional modules and the wide application potential demonstrated in the paper provide a rich research environment for structural and geotechnical engineering.

A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode (촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

A Review on Fit Test for Respirators and the Regulations (호흡기보호구의 Fit Test 방법과 규정에 관한 고찰)

  • Han, Don-Hee;Willeke, Klaus;Colton, Craig E.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.38-54
    • /
    • 1996
  • Respirator fit testing is required before entering specific work environmentals to ensure that the respirator worn satisfies a minimum of fit and that the user knows when the respirator fits properly. The fit of a respirator can be determined by qualitative (QLFT) or quantitative fit test (QNFT). The QNFT, having been universally accepted more than the QLFT, provide an objective and numerical basis by measuring a fit factor (FF). Until a few years age, only one QNFT technigue was available and accepted by U.S. Occupational Safety and Health Administration (OSHA) regulations. In the 1980's and 1990's, several new and fundamentally different QNFT methods were developed. Two of the newer methods are commercially availale and are accepted by OSHA as suitable alternatives. In this articles, the principle of operation of each ONFT technique is explained and each technique's major advantages and disadvantages are pointed out. Emphasis is given to negative-pressure air-purifying respirators, as they are in most frequent use today. The requirements and recommendations for fit testing positive-pressure respirators are discussed as well. Finally, the presently available QNFT standards and regulations are summarized to assist the user in making fit testing decisions.

  • PDF

The Development of Protocols for Equitable Testing and Evaluation in Ocean Energy - A Three-Year Strategy

  • Ingram, David M.;Villate, Jose Luis;Abonnel, Cyrille;Johnstone, Cameron
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • EquiMar (Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact) is one of the first round of energy projects under the European Commissions 7th Framework Programme (FP7). The three year EquiMar project aims to deliver a suite of protocols for the evaluation of both wave and tidal converters, harmonizing testing and evaluation procedures across the wide range of available devices, accelerating adoption through technology matching and improving the understanding of both environmental and economic impacts associated with the deployment of devices. The EquiMar protocols will cover site selection, initial design, scaling up of designs, the deployment of arrays and environmental impact assessment as well as economic issues. EquiMar will build on existing protocols, e.g. UK DTI Marine Renewables Development Fund (MRDF) protocols for wave and tidal energy, and engage with international standards setting activities, e.g. IEC TC114.

Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion

  • Do, Jinung;Montoya, Brina M.;Gabr, Mohammed A.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.429-438
    • /
    • 2019
  • Microbially induced carbonate precipitation (MICP) is an innovative soil improvement approach utilizing metabolic activity of microbes to hydrolyze urea. In this paper, the shear response and the erodibility of MICP-treated sand under axial compression and submerged impinging jet were evaluated at a low confining stress range. Loose, poorly graded silica sand was used in testing. Specimens were cemented at low confining stresses until target shear wave velocities were achieved. Results indicated that the erodibility parameters of cemented specimens showed an increase in the critical shear stress by up to three orders of magnitude, while the erodibility coefficient decreased by up to four orders of magnitude. Such a trend was observed to be dependent on the level of cementation. The treated sand showed dilative behavior while the untreated sands showed contractive behavior. The shear modulus as a function of strain level, based on monitored shear wave velocity, indicated mineral debonding may commence at 0.05% axial strain. The peak strength was enhanced in terms of emerging cohesion parameter based on utilizing the Mohr-Coulomb failure criteria.

Performance evaluation of nitrate removal in high TDS wet scrubber wastewater by ion exchange resin with dissolved air flotation (DAF) process

  • Kim, Bongchul;Yeo, Inseol;Park, Chan-gyu
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The regulations of the International Maritime Organization (IMO) have been steadily strengthened in ship emissions. Accordingly, there is a growing need for development of related technologies for the removal of contaminants that may occur during the treatment of SOx and NOx using a wet scrubber. However, this system also leads to wastewater production when the exhaust gas is scrubbed. In this research, we evaluated the performance of an ion selective resin process in accordance with scrubber wastewater discharge regulations, specifically nitrate discharge, by the IMO. Accelerated real and synthetic wastewater of wet scrubbers, contained high amounts of TDS with high nitrate, is used as feed water in lab scale systems. Furthermore, a pilot scale dissolved air flotation (DAF) using microbubble generator with ion exchange resin process was combined and developed in order to apply for the treatment of wet scrubber wastewater. The results of the present study revealed that operating conditions, such as resin property, bed volume (BV), and inlet wastewater flow rate, significantly affect the removal performance. Finally, through a pilot test, DAF with ion exchange resin process showed a noticeable improvement of the nitrate removal rate compared to the single DAF process.

Current and Future Trend: Development of Water Treatment System on Ship (선박 수처리 장치 개발 현황 및 미래)

  • Kim, Bongchul;Yeo, In-seol;Park, Chan-gyu;Park, Byung Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.14-24
    • /
    • 2019
  • 전 세계적인 기후변화로 인하여 선박 내 이용되는 물과 관련된 배출 규제도 매년 강화되고 있는 추세이다. 심해지는 규제를 만족하기 위하여 다양한 선박용 수처리 기술이 개발되고 있으며, 고도화 연구가 활발히 진행되고 있다. 본 연구에서는 선박 내에서 이루어지는 수처리 공정인 선박 평형수(ballast water)처리, 조수기(fresh water generator)를 통한 선박 내 용수 공급, 대기오염 저감을 위한 스크러버(wet scrubber) 폐세정수 처리 공정과 관련된 국제해사기구(international maritime organication, IMO)와 같은 국제적인 규제 및 특정지역과 연안에 위치한 주정부 기관의 규제 현황에 대해 문헌조사를 통해 정리하였다. 이를 바탕으로 다양한 선박 내 수자원 활용과 규제에 부합하기 위해 적용되고 있는 관련 수처리 기술을 용도별로 정리하였으며, 현재 기존기술의 효율 개선 및 신기술 도입과 관련된 연구 현황을 정리하였다. 이러한 선박 내 수처리 현황 및 향후 적용될 기술개발연구를 바탕으로 지속가능한 해양환경 조성 및 기후변화 대응이 가능할 것으로 기대된다.