• 제목/요약/키워드: Environmental Stress Cracking

검색결과 118건 처리시간 0.028초

Crack Opening Behavior of Concrete Reinforced with High Strength Reinforcing Steel

  • Soltani, Amir;Harries, Kent A.;Shahrooz, Bahram M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.253-264
    • /
    • 2013
  • A major difference between high-strength reinforcing steel and conventional steel in concrete is that the service-load steel stress is expected to be greater. Consequently, the service-load steel strains are greater affecting cracking behavior. A parametric study investigating crack widths and patterns in reinforced concrete prisms is presented in order to establish limits to the service-load steel stress and strain. Additionally, based on the results of available flexural tests, crack widths at service load levels were evaluated and found to be within presently accepted limits for highway bridge structures, and were predictable using current AASHTO provisions. A limitation on service-level stresses of $f_s{\leq}414$ MPa (60 ksi) is nonetheless recommended.

Numerical analysis for behavior of outer concrete tank in emergency LNG spillage

  • Lee, Jeong Su;Park, Chan Kyu;Lee, Yun;Kim, Ji-Hoon;Kwon, Seung Hee
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.369-385
    • /
    • 2014
  • In the existing method for analyzing the liquid tightness of the outer concrete tank in an emergency LNG spillage, the temperature variation over time inside the tank, and the concrete properties dependent on temperature and internal moisture content, have not been taken into account. In this study, the analyses for a typical LNG concrete tank subjected to thermal load due to spillage were performed with three different cases: the existing method was adopted in the first case, the transient temperature variation was considered in the second, and the temperature-moisture content dependent concrete properties were taken into account as well as the transient states of temperature in the third. The analysis results for deformation, compressive zone size, cracking, and stress of reinforcements were compared, and a discussion on the difference between the results obtained from the different analysis cases was made.

Optimal Sawcutting Methods for Hydrating Concrete Pavements

  • Jeong, Jin-Hoon;Kim, Sung-Hee;Kim, Nakseok
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.93-101
    • /
    • 2002
  • The details of an approach to account for the factors that have been found to affect the ability and the probability to control cracking due to sawcutting in newly constructed concrete pavements are presented. Several factors such as material strength parameters, method and quality of curing, slab and subbase stiffness, and concrete shrinkage affect the probability of crack initiation. Others are relevant to concrete mixture characteristics that affect development of early aged stresses caused by shrinkage and thermally induced contraction. This paper presents the results of a probabilistic analysis of the factors that affect crack control using sawcut notches. Cost analyses on both conventional and early-entry sawcutting methods are shown to support the results of the probabilistic analysis. From both an operational and cost standpoint, it is evident for the environmental conditions considered that early-entry sawcut methodology holds a significant advantage over conventional methods.

  • PDF

A reinforced concrete frame element with shear effect

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.57-78
    • /
    • 2010
  • A novel flexibility-based 1D element that captures the material nonlinearity and second order P-$\Delta$ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D planar frames in the modified fiber element framework but can readily be extended to 3D cases. The nonlinear behavior of concrete including cracking and crushing is taken into account through a modified hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete is addressed and objectivity of the response at the material level is attained by using a technique derived from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with experimental results and is demonstrated by some numerical examples.

Nonlinear responses of energy storage pile foundations with fiber reinforced concrete

  • Tulebekova, Saule;Zhang, Dichuan;Lee, Deuckhang;Kim, Jong R.;Barissov, Temirlan;Tsoy, Viktoriya
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.363-375
    • /
    • 2019
  • A renewable energy storage pile foundation system is being developed through a multi-disciplinary research project. This system intends to use reinforced concrete pile foundations configured with hollowed sections to store renewable energy generated from solar panels attached to building structures in the form of compressed air. However previous research indicates that the compressed air will generate considerable high circumferential tensile stresses in the concrete pile, which requires unrealistic high hoop reinforcement ratio to avoid leakage of the compressed air. One possible solution is to utilize fiber reinforced concrete instead of placing the hoop reinforcement to resist the tensile stress. This paper investigates nonlinear structural responses and post-cracking behavior of the fiber reinforced concrete pile subjected to high air pressure through nonlinear finite element simulations. Concrete damage plasticity models were used in the simulation. Several parameters were considered in the study including concrete grade, fiber content, and thickness of the pile section. The air pressures which the pile can resist at different crack depths along the pile section were identified. Design recommendations were provided for the energy storage pile foundation using the fiber reinforced concrete.

극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析) (Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading)

  • 박연수
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.703-710
    • /
    • 1994
  • 극저사이클 하중하에서 강구조부재의 비선형 유한요소해석을 실험과 더불어 수행하였다. 본 해석은 강진과 같은 반복하중하에서 강구조부재의 균열발생전까지를 유한요소법으로 추적한 것이다. 해석과 실험결과로부터 얻어진 히스테러틱 거동을 비교한 후, 큰 반복변형을 받는 응력집중부에 있어서 국소변형율의 이력을 수치해석에 의해 시뮬레이션하였다. 이 국소변형율의 이력과 극저사이클 파괴설험시의 균열발생 현상과의 관계를 정량적으로 분석하였다. 실험과 수치해석 결과를 바탕으로 강구조부재의 내전안전성 평가를 위한 새로운 방법이 본 논문에서 제시되었다.

  • PDF

강섬유보강(鋼纖維補强)콘크리트 Deep Beam의 전단특성(剪斷特性)에 관한 연구(硏究) (A Study on the Shear Properties of Steel Fiber Reinforced Concrete Deep Beams)

  • 문제길;홍익표
    • 대한토목학회논문집
    • /
    • 제13권1호
    • /
    • pp.75-87
    • /
    • 1993
  • 본 논문은 강섬유보강콘크리트 deep beam의 전단특성을 규명하고 균열전단강도와 극한전단강도를 예측하기 위한 것으로 섬유로 보강된 16개의 보를 포함한 총 20개의 보를 4 series로 나누어 실험을 수행하였다. 실험의 변수는 콘크리트의 강도, 섬유혼입률, 전단지간 등이며, 실험 과정을 통해 파괴형상, 처짐, 변형률, 전단강도 등을 측정 하였다. 실험결과로 부터 섬유의 혼입량이 많아지고, 콘크리트의 강도가 커질 수록, 그리고 전단지간이 짧아질수록 섬유보강콘크리트 deep beam의 균열 및 극한전단강도가 증가됨을 밝혔다. 또한, 실험성과를 회귀분석하여 균열전단강도와 극한전단강도 추정식을 제안 하였다. 제안된 추정식에 의한 계산값과 실험성과를 비교 검토하여 그 상관성을 확인하였다.

  • PDF

원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가 (Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant)

  • 송동수;하상준;성제중;전황용;허성철
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.186-190
    • /
    • 2014
  • 원자력발전소는 냉각재상실사고(LOCA)와 같은 과도상태시 pH 조절을 통해 격납건물의 핵분열생성물(요오드) 제거 능력을 유지한다. 이와 더불어 격납건물 내부의 스테인레스강 기기들의 응력부식균열(Stress Corrosion Cracking)을 방지하고 알루미늄 또는 아연 부식에 의한 수소생성을 최소화할 수 있기 때문에 살수 및 집수조냉각수의 화학조건(pH) 조절능력이 요구된다. 현재 원전은 LOCA시 능동형 살수첨가제인 NaOH를 사용하여 격납건물 살수 및 집수조냉각수의 pH를 조절하도록 설계되어있다. 본 논문에서는 LOCA시 집수조냉각수의 pH를 분석하고, 살수화학조건 pH 관련 최신규제요건인 표준심사지침(SRP) 6.5.2에 따라 핵분열생성물제거상수 및 제염계수를 계산하였다. 분석결과, 격납건물집수조 pH는 8.09~9.67로서 설계기준을 만족한다. 그리고 격납건물살수계통에 의한 핵분열생성물 제거상수 및 제염계수는 원전 내환경기기검증을 위한 방사선환경 평가의 입력으로 제공된다.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

Obtaining equivalent fracture toughness of concrete using uniaxial compression test

  • Li, Zongjin;Zhao, Yanhua
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.387-402
    • /
    • 2010
  • From typical stress-axial strain curve and stress-volume strain curve of a concrete under uniaxial compression, the initiation and localization of microcracks within the interior of the specimen can be identified. The occurrence of random microcrack indicates the end of the linear elasticity, and the localization of microcrack implies formation of major crack, which triggers the onset of unstable crack propagation. The interval between initiation and localization of microcracks is characterized by a stable microcrack growth. Based on fracture behavior observed from a uniaxial compressive test of a concrete cylinder, a model has been developed to extract fundamental fracture properties of a concrete, i.e. the equivalent fracture toughness and the size of fracture process zone. The introduction of cracking Poisson's ratio accounts for tensile failure characteristics of concrete even under uniaxal compression. To justify the validity of the model proposed, tests on three-point bending have been performed to obtain the fracture toughness in accordance with two parameter fracture model and double-K fracture model. Surprisingly, it yields favorably comparable results and provides an encouraging alternative approach to determine fracture properties for concretes.