• Title/Summary/Keyword: Environmental Roughness

Search Result 378, Processing Time 0.027 seconds

Theoretical and Experimental Study on the, Dynamic Behavior of Continuous Bridge having Irregular Surface under-Moving Load (불규칙한 노면(路面)을 주행하는 이동하중에 의한 연속교의 동적거동에 관한 이론 및 실험적 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Jo, Sir Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.21-30
    • /
    • 1989
  • In this study, the dynamic behavior of a continuous bridge under moving load is studied considering roughness of the road surface. Vehicle model includes the spring effects of axes, and due to these effects, equations of motions for the vehicle and bridge are derived in coupled form. And then iteration method is used to solve the equations. In experimental study a bridge model is constructed considering the similarity rule in order that the model exhibits dynamic behavior similar to that of prototype. Three types of roughness such as uneven random roughness, uplift on the approach and piece-wise constant roughness are used to describe road roughness. Through the numerical analysis and experiments, the effects of surface roughness, sprung mass, and velocity on the dynamic behavior of the bridge are examined.

  • PDF

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.

Adjustment Algorithm of Incident Light Power for Improving Performance of Laser Surface Roughness Measurement (레이저 표면 거칠기 측정 성능 향상을 위한 입사 광강도 조정 알고리즘)

  • 서영호;김화영;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.79-87
    • /
    • 2004
  • The light pattern reflected from a machined surface contains some information like roughness and profile on the projected surface as expected in the Beckmann-Spizzichino model. In applying the theory into a real reliable measuring device, many parameters such as incident light power, wave length, spot size should be kept a constant optical value. However, the reflected light power is likely to change with the environmental noise, the variations of the light source, the reflectivity of the surface, etc. even though the incident light power is constant. In this study, a method for adjusting the incident light power to keep the reflected light power projected on a CMOS image sensor constant was proposed and a simple adjustment algorithm based on PI digital control was examined. Experiments verified that the proposed method made the surface roughness measurement better and more reliable even under variations of the height of light source.

Application of Laser Sensor to Geotechnical Engineering (지반공학에서 레이저센서의 활용)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.440-449
    • /
    • 2007
  • Recently, researches for side resistances of drilled shafts considering socket roughness have been conducted actively. In order for these researches, roughness measurement devices using laser sensor were developed by two research groups. The devices were only applied in boreholes with dry conditions. In this research, a roughness measurement devices using the laser sensor (BKS-LRPS) was developed, which could apply in wet conditions and also measure vertical offsets of drilled shafts. In addition, the application of the laser sensor to the geotechnical engineering proposed in this paper.

  • PDF

Friction Factor for Circular Pipe with Uniform Roughness (균일조도 원형관 마찰계수)

  • Yoo, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.165-172
    • /
    • 1993
  • On the basis of Nikuradse laboratory experiments conducted in circular pipe with uniform roughness, five flow regimes are defined with respect to the characteristics of boundary layer such as laminar, transition laminar, smooth turbulent, transition turbulent and rough turbulent flows. Two cases are found for the transition laminar flow: one for the transition between laminar flow and smooth turbulent flow and the other for the one between laminar flow and rough turbulent flow. They all can be clearly determined by the relative roughness or the ratio of pipe diameter to the roughness. Explicit functions are developed for the estimation of pipe friction factor for the various flow conditions including turbulent flow regimes, which have excellent agreement with the Nikuradse laboratory data.

  • PDF

Turbulent Flow over 2-D Rectangular-Shaped Roughness Elements with Various Spacings(Part 1 : Time Averaged Flow) (사각단면을 갖는 환경 거칠기 요소의 거칠기 간격에 따른 유동 변화 (제1보: 평균유동장))

  • Hyun B.S.;Suh E.J.;Kim M.R.;Choi K.C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.79-84
    • /
    • 2006
  • The present study deals with the flow over a flat plate with repeated roughness elements of 2-dimensional rectangular shape, which can be applied into the study on the natural geographical roughness and the turbulent flow on roughened solid surface. Experiment was performed using PIV technique in the circulating water channel. Results showed that the flow over roughness elements was characterized by the high shear flow emanating from top of roughness element and the recirculating region formed at the trough of two roughness elements. In general, the ratio between the spacing and the height of roughness elements plays a crucial role in developing the flow pattern near wall surface.

  • PDF

Calibration of Borehole Roughness Measurement System for Large Diameter Drilled Shafts in Water (수중에서 적용가능한 대구경 현장타설말뚝의 굴착공 벽면거칠기 측정장치의 보정에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.5-21
    • /
    • 2009
  • Based on recent studies on rock socketed drilled shafts, it was found that the side resistance of rock socketed drilled shafts is affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness is affected by rock types and joints, drilling methods, and diameters. Since existing roughness measurement systems could be conducted only in the air, a new roughness measurement system, which can measure rock socket roughness in the air and also in the water, is needed. However, the development of new roughness measurement system fur civil engineers has been faced with difficulties of electrical applications. In this study, the laboratory verification system far BKS-LRPS (Backyoung-KyungSung Laser Roughness Profiling System) was developed, which can be applied both in the water and air. Based on the laboratory verification, it was found that the improved BKS-LRPS could define effective measurement distances for the conditions reflecting the apparatus and in-situ situations.

A Tendency of Prediction Technique for the Assessment of Railway Noise (철도소음 영향평가를 위한 예측기술 동향)

  • Cho, Jun-Ho;Park, Young-Min;Sun, Hyo-Sung;Hong, Woong-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • Since 1990s, the railway noise has been researched and developed in our nation. First of all, what's causing the noise and how to eliminate the cause of the noise must be found out. Secondly, cutting off the propagation path of the noise from the noise source to the receiving points. In this study the characteristics of prediction formula for the assessment of railway noise used in some nations including Korea were investigated. In order to develop the prediction formula of the railway noise, the noise radiated from railway vehicle, rails and sleepers, characteristics of noise barrier, velocity of train, ground effects, roughness should be analyzed and predicted. Especially, on the basis of acoustics, the characteristics of source are applied to acoustic power and directivity information.

Experimental Study on Effects of Sand Particles Shape on Geotechnical Properties (실험적 연구를 통한 모래입자 형상이 토질정수에 미치는 영향)

  • Shin, Eun-Chul;Kim, Jong-In;Lee, Han-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.896-905
    • /
    • 2006
  • Several soil parameters such as particle characteristics, geological element, drainage and loading conditions are influenced on the shear strength of soil. The characteristics of soil particles are important factor to the shear strength of soil. However, this component is not well considered in the determination of soil strength in Korea. The particle shape of sand was analyzed by utilizing SEM(Scanning Electron Micrograph) and compared its results in terms of aspect ratio, angularity and roughness. Based on the determined soil parameters, the ultimate bearing capacity of sandy ground was estimated by using Terzaghi bearing capacity equation.

  • PDF