• Title/Summary/Keyword: Environmental Roughness

Search Result 378, Processing Time 0.031 seconds

Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface (흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구)

  • Kim, Kyoung-Ho;Lee, Yoonjoo;Shin, Yun-Ji;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.

An Investigation of Changes in Bed Roughness of Selected Alluvial Rivers (충적하천(沖積河川)의 하상마찰(河床摩擦) 변화(變化)에 대한 조사(調査)·분석(分析))

  • Yu, Kwon Kyu;Kim, Hyoung Seop;Kim, Hoal Gon;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.111-121
    • /
    • 1993
  • Changes in bed forms and subsequent changes in channel roughness by changes in water discharge are discussed with the field data collected from some alluvial rivers in Korea. This study is limited to the following condition of river flow: (1) Medium size alluvial rivers with their widths of 100 m more or less, (2) Straight and prismatic river reach with no additional causes for energy loss but bed friction, (3) Lower-flow regime with Froude number less than 0.5. Major conclusions obtained from this study can be summarized as follows: (1) For the channels considered in this study, the bed roughness expressed by Manning's n increases from 0.02 for the plane beds with no sediment motion to 0.05 for the dune beds, (2) The roughness coefficient for alluvial channels should not be estimated from Strickler-type equations developed for the fixed beds, (3) The method for determining the channel roughness suggested in the present guideline for river works, River Structure Standard, appears to be lack of generality. More research based on the field data collected in Korea is needed in order to improve the existing methods.

  • PDF

A Study on Hydraulic Characteristics of Rock Joints Dependant on JRC Ranges (JRC 등급에 따른 절리면 수리특성 연구)

  • Chae Byung-Gon;Seo Yong-Seok;Kim Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.461-468
    • /
    • 2004
  • In order to characterize hydraulic property dependant on join roughness in rock mass, this study computed permeability coefficients on each range of joint roughness coefficient (JRC) suggested by Barton(1976). For a quantitative analysis of roughness components spectral analysis using the fast fourier transform was performed to select effective frequencies on each PC range. The results of spectral analyses show that low ranges of the JRC are mainly composed of low frequency domain, while high ranges of the JRC have dominant components at high frequency domain. The inverse Fourier transform made it possible to generate joint models of each JRC range using the effective frequencies of roughness spectrum. The homogenization analysis was applied to calculate permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. According to the calculation results, permeability coefficients were distributed between $10^{-3}m/sec\;and\;10^{-4}/sec$. In cases of sheared joint models permeability coefficients were plotted between $10^{-4}m/sec\;and\;10^{-5}/sec$, showing irregular distribution of permeability coefficients on each IRC range. The differences of permeability coefficients for the same aperture models or for the sheared joint models indicate that changes of roughness pattern influence on permeability coefficients. Therefore, the effect of joint roughness should be considered to characterize hydraulic properties in rock joints.

미생물 고정화 담체의 물리적 특성

  • 박영식;구기우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • In order to develop of support medla for bloom reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were enamined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached $20.1{\times}10^7CFU/cm^2$ at surface, compared with diatomaceous earth which were attached of $9.2{\times}10^7CFU/cm^2$ in our research, surface area and hydrophobicity show- ed more Influence than any other factor on attachment of microorganisms.

  • PDF

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

Study on Pullout Behavior of Pipe Anchor (파이프형 앵커의 인발거동에 대한 연구)

  • Bae, Wooseok;Lee, Bongjik;Kwon, Youngcheul;Lee, Jundae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • In this study, laboratory model test was performed to estimate pullout behavior of pipe type anchor with surface roughness, embedment and diameter. The design of buried pipe anchors in areas of vertical ground movement is governed, in part, by magnitude of the forces imposed on the pipe and displacements at which they are developed. In this paper, uplift resistance and displacement characteristics of pipe anchors caused by ground condition and embedment ratio, surface roughness, pipe diameter through the analysis of pipe anchor model test were compared and analyzed. The test results of the buried pipe showed that as the relative density increases, ultimate uplift resistance increase in 20%. When pipe anchor is failed with the relative density of the ground, the change of surface roughness, it was shown that the deformation increases as the ratio of penetration increases from 2 to 8 in five times approximately. And most anchor-based theories overestimate the breakout factor.

  • PDF

Evaluation of Roofing Potential at the Ground-structure Interface (지반-구조물 경계면의 루핑 포텐셜 평가)

  • Park, Jeongman;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.25-33
    • /
    • 2018
  • Piping is one of the most frequently occurring collapse type of a levee, and is often caused by roofing (backward erosion piping) at the ground-structure interface. Roofing is generally evaluated using creep ratio. However, creep ratio does not take into account the characteristics of the ground-structure interface. In this study, the roofing risk was investigated by using model test and numerical analysis considering the ground-structure interface characteristics. In the model test, it was confirmed that the piping potential decreased as the interface roughness increased, and this was applied to the numerical analysis. Existing numerical methods can not adequately simulate the particle behavior at the ground-structure interface because only the water level difference is considered. In this paper, particle behavior at the interface was investigated by performing seepage analysis and then, carrying out particle analysis technique simulating the boundary condition of the ground-structure interface. Analysis results have shown that the roofing resistance decreases as the ground-structure interface roughness decreases.

A Study on the Environmentally Friendly Block (환경친화적 블록에 관한 연구)

  • Han, Woon-Woo;Lee, Kee-Se;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.63-72
    • /
    • 2005
  • The characteristics of environmentally friendly block, roughness, erosion, stability and dissolved oxygen(DO) were investigated by hydraulic experiment. It was found that the roughness of A-block was lower than I block and A block was more stable to the variation of flow. So it is expected that A-block will be more effective to the channel flow. It was also found that the erosion of channel bed was very small or rarely occurred and stable in the case of 3-dimensional A-block filled with sand. And 3-dimensional A-blocks assembled with A-blocks were more stable against the flow force than I block because of the united force of A-blocks. When the bed of channel was paved with 3-dimensional A-blocks, DO was increased higher than I block. So it is expected that A-block will be more advantageous to underwater environment than I block.

  • PDF

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Semidry-cutting Characteristics according to Workpiece Materials (공작물 재질에 따른 세미드라이 절삭가공 특성)

  • Lee, Jong-Hang;Park, Cheol-Woo;Lee, Seok-Woo;Choi, Hon-Zong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.968-973
    • /
    • 2003
  • As environmental restrictions have continuously become more strict, it has emphasized development of environment-friendly technologies. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on worker's health and working environment and, hence, recently there have been numerous attempts to minimize harmful effects of cutting fluids on environments. To minimize the use of cutting fluids in machining, conventional cutting fluids have been replaced with the technologies of pressurized cold air and minimum quantity lubrication(MQL). Compared with milling, turning is a continuous cutting process, where tools are continuously heated up and lack of lubricity could lead to tool wear and deteriorated surface roughness. In this study, it has been investigated how tool wear and surface roughness could be affected by cutting conditions, supply and cooling methods. The experimental results show that MQL technology is able to minimize harmful effects of conventional cutting fluids.

  • PDF