• Title/Summary/Keyword: Environmental Monitoring System

Search Result 1,795, Processing Time 0.03 seconds

Spatial Distribution of the Population at Risk of Cholangiocarcinoma in Chum Phaung District, Nakhon Ratchasima Province of Thailand

  • Kaewpitoon, Soraya J;Rujirakul, Ratana;Loyd, Ryan A;Matrakool, Likit;Sangkudloa, Amnat;Kaewthani, Sarochinee;Khemplila, Kritsakorn;Eaksanti, Thawatchai;Phatisena, Tanida;Kujapun, Jirawoot;Norkaew, Jun;Joosiri, Apinya;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.719-722
    • /
    • 2016
  • Background: Cholangiocarcinoma (CCA) is a serious health problem in Thailand, particularly in northeastern and northern regions, but epidemiological studies are scarce and the spatial distribution of CCA remains to be determined. A database for the population at risk is required for monitoring, surveillance and organization of home health care. This study aim was to geo-visually display the distribution of CCA in northeast Thailand, using a geographic information system and Google Earth. Materials and Methods: A cross-sectional survey was carried out in 9 sub-districts and 133 villages in Chum Phuang district, Nakhon Ratchasima province during June and October 2015. Data on demography, and the population at risk for CCA were combined with the points of villages, sub-district boundaries, district boundaries, and points of hospitals in districts, then fed into a geographical information system. After the conversion, all of the data were imported into Google Earth for geo-visualization. Results: A total of 11,960 from 83,096 population were included in this study. Females and male were 52.5%, and 47.8%, the age group 41-50 years old 33.3%. Individual risk for CCA was identifed and classified by using the Korat CCA verbal screening test as low (92.8%), followed by high risk (6.74%), and no (0.49%), respectively. Gender ($X^2$-test=1143.63, p-value= 0.001), age group ($X^2$-test==211.36, p-value=0.0001), and sub-district ($X^2$-test=1471.858, p-value=0.0001) were significantly associated with CCA risk. Spatial distribution of the population at risk for CCA in Chum Phuang district was viewed with Google Earth. Geo-visual display followed Layer 1: District, Layer 2: Sub-district, Layer 3: Number of low risk in village, Layer 4: Number of high risk in village, and Layer 5: Hospital in Chum Phuang District and their related catchment areas. Conclusions: We present the first risk geo-visual display of CCA in this rural community, which is important for spatial targeting of control efforts. Risk appears to be strongly associated with gender, age group, and sub-district. Therefor, spatial distribution is suitable for the use in the further monitoring, surveillance, and home health care for CCA.

Design of thermal system using 3-way valve and PTC to which a solar module (태양광 모듈이 부착된 PTC 집열기 및 3웨이 밸브를 이용한 온열 시스템 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.454-459
    • /
    • 2017
  • In this study, a thermal system was designed using a 3-way valve and PTC attached to a solar module. This design could help solve the problem of rising fossil fuel costs caused by limited reserves and environmental problems resulting from fossil fuel use. The thermal system is a hot-air and heating control system composed of a temperature sensor part, mode setting part (for hot air and heating modes), supply part, and thermal system control part. The temperature sensor part has piping and an indoor temperature display, and the temperature setting part has multiple monitoring functions. The mode setting part switches between hot air and heating modes and can be used to set the temperature. The thermal system control part performs functions such as PTC control and temperature setting, PTC day and night and time selection, hot air and heating control, and three-way valve selection. The results verify that the system operates with stable response speeds of $680{\mu}s$ in the temperature sensor part, $700{\mu}s$ in the mode setting part, and $610{\mu}s$ in the thermal system control part.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

Comparison between Passive Flux Meters and Borehole Dilution Tests to Estimate Groundwater Flux in a Karst Aquifer (플럭스미터와 단공희석시험을 이용한 카르스트 대수층 내 지하수 플럭스 측정 비교)

  • Lee, Juyeon;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.543-552
    • /
    • 2020
  • In this study, we measured groundwater fluxes with a passive flux meter and a borehole dilution test in the Upper Floridan Aquifer. In addition, the feasibility of the passive flux meter is also evaluated within matrix and non-matrix zones. The results of the PFM (5.96 ± 1.75 cm/day) showed good agreement with those of the BHD (4.68 ± 2.99 cm/day) in matrix zones, whereas the results of the PFM (9.94 ± 0.90 cm/day) showed poor agreement with those of the BHD (1817.37 ± 1795.50 cm/day) in non-matrix zones. We assumed that the groundwater passes through the sorbent material inside the PFM. However, it could not pass through the sorbent when the groundwater flux is faster than 11 cm/day. The flow might bypass between monitoring well and the PFM. The PFM used in this study might be suitable for measuring the groundwater fluxes under 11 cm/day. Therefore, more extensive research is needed in the future to measure fast groundwater fluxes (> 11 cm/day).

Spatial Distribution of Macropore Flow Percentage and Macroporosities in the Gwangneung Forest Catchment (광릉 산림 소유역에서의 대공극흐름율과 유효대공극부피분율의 공간 분포)

  • Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Lim, Jong-Hwan;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.234-246
    • /
    • 2007
  • The role of macropore in the hydrological processes is important at the hillslope scale. Developments and distribution of macropores have not been investigated in conjunction with the characteristics of the hillslope such as topography, soil property, and soil moisture. In this study, macropore properties, such as macropore flow and saturation hydraulic conductivity were measured at a hillslope located in Gwangneung Research Forest, Pochun-gun, Gyeonggi-do, South Korea. An intensive field survey provided a refined Digital Elevation Model (DEM) for surface and subsurface topography. Spatial distributions of upslope area and topographic index were obtained through the digital terrain analysis. The total number of monitoring points was 22, and the selected points were distributed along the transect of the digital contour map. Vertical fluxes through macropores were measured using a tension infiltrometer at the depth of 0.1 m from the surface. Spatial and temporal distributions of soil moisture were obtained using an on-line measurement system, TRASE, installed in the study area. Soil moisture for the aforementioned points was measured at 0.1 and 0.3m depths below the surface. The results from tension infiltrometer experiments present that the macropore flows ranged between 21 and 94%, and the measured macroporosities varied from 1.4 to 47%. Macropore flows and macroporosities tended to increase as the measurement location moved to downslope. The ability for water conduction through macropores becomes increasingly developed as the location approaches the outlet of the hillslope.

Comparison of Soil Chemistry and Environmental Characteristics of Organic Paddy and Conventional Paddy Before Basal Fertilizer Application (기비전 유기논과 관행논의 토양 화학 및 환경 특성 비교)

  • Park, Jeong-Soo;Wang, Long;Kang, Ku;Gu, Bon-Wun;Kim, Han-Joong;Hong, Seong-Gu;Hong, Seung-Gil;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.47-57
    • /
    • 2015
  • Organic farming system has been considered environmental friendly and sustainable agricultural practice. However, the influence of organic farming on soil quality and environment is not well informed and controversial. We sampled and analyzed 0~15 cm and 15~30 cm depth soils of organic and conventional paddy fields in Yongin and Anseong. The electric conductivity and organic matter content of organic paddy soil were significantly less (p = 0.0097, 0.0067, respectively) than those of conventional paddy soil. Available phosphate and total phosphorus in 0~15 cm depth of organic paddy soil were $211.1{\pm}135.3$, $872.4{\pm}286.3mg/kg$, respectively, less than those of conventional paddy soil. Available phosphate amount in conventional paddy was $358.8{\pm}246.7mg/kg$, which is higher than 300 mg/kg that can cause secondary environmental contamination by runoff. The amount of total nitrogen in organic paddy soil was less than that in conventional paddy while their difference was not significant. The concentration of the heavy metals in organic paddy soil was also lower than that in conventional paddy soil but their difference was not statistically significant. Our findings demonstrate that electric conductivity, organic matter, nutrients, and heavy metals in organic paddy soil were less than those in conventional paddy soil. However, additional monitoring of soil properties for longer period is necessary to certify such a conclusion.

Health and Environmental Risk Assessment of Pollutants in Pohang (포항지역 오염물질 보건.환경 위해성 평가 -미세먼지의 발생특성 및 농도분포를 중심으로-)

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2719-2726
    • /
    • 2010
  • The purpose of this study was to investigate the scientific basic grounds for the assessment of health and environmental diseases resulting from air pollutants in Pohang. For this study, we investigated pollutants, weather characteristics and concentration distribution of fine particles ($PM_10$) yearly and each season, using data from Air Quality Monitoring Stations. The properties of concentration distribution and seasonal fluctuation of $PM_10$ were studied qualitatively and quantitatively using CALPUFF, air dispersion model. The average concentration of $PM_10$ for each season was spring($75.7{\mu}g/m^3$)>summer($56.8{\mu}g/m^3$)>winter($53.6{\mu}g/m^3$)>fall( $52.7{\mu}g/m^3$). In the case of spring, high concentrations appear due to the Asian dust frequently occurring. The contributions of $PM_10$ classified by the types of pollution source in Pohang were point source 62%>mobile source 33%>area source 5%. An important point is that 97% of emissions were produced from the iron manufacture in steel industry. Therefore, it is necessary to control the emission sources of pollutants and to construct an observation system at Pohang steel industrial complex from now on. It’s time to control the risk factors for health and environmental disease to protect the health of resident in Pohang and its neighboring areas.

Comparative assessment of urban stormwater low impact strategies equipped with pre-treatment zones (침강지 시설이 조성된 LID 시설의 환경적 영향평가)

  • Yano, K.A.V.;Reyes, N.J.D.G.;Jeon, M.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Recently, Low impact development techniques, a form of nature-based solutions (NBS), were seen cost-efficient alternatives that can be utilized as alternatives for conventional stormwater management practices. This study evaluated the effectiveness of an infiltration trench (IT) and a small constructed wetland (SCW) in treating urban stormwater runoff. Long-term monitoring data were observed to assess the seasonal performance and cite the advantages and disadvantages of utilizing the facilities. Analyses revealed that the IT has reduced performance during the summer season due to higher runoff volumes that exceeded the facility's storage volume capacity and caused the facility to overflow. On the other hand, the pollutant removal efficiency of the SCW was impacted by the winter season as a result of dormant biological activities. Sediment data also indicated that fine and medium sand particles mostly constituted the trapped sediments in the pretreatment and media zones. Sediments in SCW exhibited a lower COD and TN load due to the phytoremediation and microbiological degradation capabilities of the system. This study presented brief comparison LID facilities equipped with pre-treatment zones. The identified factors that can potentially affect the performance of the systems were also beneficial in establishing metrics on the utilization of similar types of nature-based stormwater management practices.