• Title/Summary/Keyword: Environmental Fate

Search Result 279, Processing Time 0.032 seconds

Estimation of Physical-Chemical Property and Environmental Fate of Benzoyl peroxide Using (Q)SAR

  • Kim, Mi-Kyoung;Kim, Su-Hyon;Heekyung Bae;Sanghwan Song;Hyunju Koo;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik;Lee, Moon-Soon
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.154-154
    • /
    • 2002
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,375 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of seven chemicals of which human health and environmental risks are being assessed by National Institute of Environmental Research (NIER) under the frame of OECD SIDS Program. In this study, Quantitative Structure-Activity Relationships (QSAR) is used for getting adequate information on the physical-chemical property and the environmental fate of this chemical. For the assessment of benzoyl peroxide, models such as MPBPWIN for vapor pressure, KOWWIN for octanol/water partition coefficient, HENRYWIN for Henry's Law constant, AOPWIN for photolysis and BCFWN for bioconcentration factor (BCF) were used. These (Q)SAR model programmes were worked by using the SHILES (Simplified Molecular Input Line Entry System) notations. The physical-chemical properties and the environmental fate of benzoyl peroxide were estimated as followed : vapor pressure =0.00929 Pa, Log Kow = 3.43, Henry's Law constant = 0.00000354 atm-㎥/mole at 25 $^{\circ}C$, the half-life of photodegradation = 3 days, bioconcentration factor (BCF) = 92

  • PDF

Fate and Transport of Mercury in Environmental Media and Human Exposure

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.335-343
    • /
    • 2012
  • Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental ($Hg^0$) and divalent ($Hg^{2+}$) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly $Hg^{2+}$, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.

Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils (간척지 토양환경 조건별 토양내 질소 동태와 영향 요소)

  • Han, Sang-Gyun;Kim, Hey-Jin;Song, Jin-Ah;Chung, Doug-young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

The Fate and Factors Determining Arsenic Mobility of Arsenic in Soil-A Review

  • Lee, Kyo Suk;Shim, Ho Young;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Arsenic which is found in several different chemical forms and oxidation states and causes acute and chronic adverse health effects is a toxic trace element widely distributed in soils and aquifers from both geologic and anthropogenic sources. Arsenic which has a mysterious ability to change color, behavior, reactivity, and toxicity has diverse chemical behavior in the natural environment. Arsenic which has stronger ability to readily change oxidation state than nitrogen and phosphorus due to a consequence of the electronic configuration of its valence orbitals with partially filled states capable of both electron donation and acceptance although the electronegativity of arsenic is greater than that of nitrogen and similar to that of phosphorus. Arsenate (V) is the thermodynamically stable form of As under aerobic condition and interacts strongly with solid matrix. However, it has been known that adsorption and oxidation reactions of arsenite (III) which is more soluble and mobile than As(V) in soils are two important factors affecting the fate and transport of arsenic in the environment. That is, the movement of As in soils and aquifers is highly dependent on the adsorption-desorption reactions in the solid phase. This article, however, focuses primarily on understanding the fate and speciation of As in soils and what fate arsenic will have after it is incorporated into soils.

Modeling the Fate of Priority Pharmaceuticals in Korea in a Conventional Sewage Treatment Plant

  • Kim, Hyo-Jung;Lee, Hyun-Jeoung;Lee, Dong-Soo;Kwon, Jung-Hwan
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.186-194
    • /
    • 2009
  • Understanding the environmental fate of human and animal pharmaceuticals and their risk assessment are of great importance due to their growing environmental concerns. Although there are many potential pathways for them to reach the environment, effluents from sewage treatment plants (STPs) are recognized as major point sources. In this study, the removal efficiencies of the 43 selected priority pharmaceuticals in a conventional STP were evaluated using two simple models: an equilibrium partitioning model (EPM) and STPWIN$^{TM}$ program developed by US EPA. It was expected that many pharmaceuticals are not likely to be removed by conventional activated sludge processes because of their relatively low sorption potential to suspended sludge and low biodegradability. Only a few pharmaceuticals were predicted to be easily removed by sorption or biodegradation, and hence a conventional STP may not protect the environment from the release of unwanted pharmaceuticals. However, the prediction made in this study strongly relies on sorption coefficient to suspended sludge and biodegradation half-lives, which may vary significantly depending on models. Removal efficiencies predicted using the EPM were typically higher than those predicted by STPWIN for many hydrophilic pharmaceuticals due to the difference in prediction method for sorption coefficients. Comparison with experimental organic carbon-water partition coefficients ($K_{ocs}) revealed that log KOW-based estimation used in STPWIN is likely to underestimate sorption coefficients, thus resulting low removal efficiency by sorption. Predicted values by the EPM were consistent with limited experimental data although this model does not include biodegradation processes, implying that this simple model can be very useful with reliable Koc values. Because there are not many experimental data available for priority pharmaceuticals to evaluate the model performance, it should be important to obtain reliable experimental data including sorption coefficients and biodegradation rate constants for the prediction of the fate of the selected pharmaceuticals.