• Title/Summary/Keyword: Environmental Factor Analysis

Search Result 3,017, Processing Time 0.035 seconds

A Comparative Study on Concentrations of Indoor and Outdoor Particulate Matters in Elementary Schools (초등학교 실내외 미세먼지 농도 비교 연구)

  • Kim, Dae-hyeon;Son, Youn-Suk;Lee, Tae-Jung;Jo, Young Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1721-1732
    • /
    • 2020
  • Elementary school students spend a lot of time in a school and are more exposed to indoor air pollution. Also the students are physically growing and have a relatively high respiratory rate per unit weight compared to adults, so it is known that there is a high sensitivity to indoor air pollution. Therefore, indoor air quality in a school is becoming an important factor for the student's health. In this study, a correlation analysis using levels of indoor and outdoor Particulate Matter (PM) measured from five elementary schools in Seoul was performed to evaluate the effect of outdoor PM on indoor PM. PM ratio and indoor/outdoor (I/O) ratio were also analyzed to investigate the actual condition of indoor air quality and effect of outdoor PM on indoor PM. As a result, the correlation between indoor and outdoor PM in elementary school was more significant in PM2.5 and PM1 than PM10. In the case of I/O ratio, the I/O ratio of PM10 was higher than that of 1 in four elementary schools except SD (BB:2.21, NS: 1.67, IS: 1.73, SI: 1.17). This indicates that the activity of students has a great effect on the concentration of indoor PM10.

Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems (정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구)

  • Oh, Hye-Ji;Heo, Yu-Ji;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.390-397
    • /
    • 2021
  • The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package "dtwclust". Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.

Experimental and model study on the mixing effect of injection method in UV/H2O2 process

  • Heekyong Oh;Pyonghwa Jang;Jinseok Hyung;Jayong Koo;SungKyu Maeng
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.129-140
    • /
    • 2023
  • The appropriate injection of H2O2 is essential to produce hydroxyl radicals (OH·) by mixing H2O2 quickly and exposing the resulting H2O2 solution to UV irradiation. This study focused on evaluating mixing device of H2O2 as a design factor of UV/H2O2 AOP pilot plant using a surface water. The experimental investigation involved both experimental and model-based analyses to evaluate the mixing effect of different devices available for the H2O2 injection of a tubular hollow pipe, elliptical type of inline mixer, and nozzle-type injection mixer. Computational fluid dynamics analysis was employed to model and simulate the mixing devices. The results showed that the elliptical type of inline mixer showed the highest uniformity of 95%, followed by the nozzle mixer with 83%, and the hollow pipe with only 18%, after passing through each mixing device. These results indicated that the elliptical type of inline mixer was the most effective in mixing H2O2 in a bulk. Regarding the pressure drops between the inlet and outlet of pipe, the elliptical-type inline mixer exhibited the highest pressure drop of 15.8 kPa, which was unfavorable for operation. On the other hand, the nozzle mixer and hollow pipe showed similar pressure drops of 0.4 kPa and 0.3 kPa, respectively. Experimental study showed that the elliptical type of inline and nozzle-type injection mixers worked well for low concentration (less than 5mg/L) of H2O2 injection within 10% of the input value, indicating that both mixers were appropriate for required H2O2 concentration and mixing intensity of UV/ H2O2 AOP process. Additionally, the elliptical-type inline mixer proved to be more stable than the nozzle-type injection mixer when dealing with highly concentrated pollutants entering the UV/H2O2 AOP process. It is recommended to use a suitable mixing device to meet the desired range of H2O2 concentration in AOP process.

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Establishment of the Appropriate Risk Standard through the Risk Assessment of Accident Scenario (사고시나리오별 위험도 산정을 통한 적정 위험도 기준 설정)

  • Kim, Kun-Ho;Chun, Young-Woo;Hwang, Yong-Woo;Lee, Ik-Mo;Kwak, In-ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • An off-site consequence analysis is used to calculate the risks when hazardous chemicals that is being used on-site has been exposed off-site; the biggest factor that impacts the risk is the risks of accident scenarios. This study seeks to calculate risks according to accident scenarios by applying OGP/LOPA risk calculating methods for similar facilities, calculate risk reduction ratio by inspecting applicable IPL for incidents, and propose an appropriate risk standard for different risk calculating methods. Considering all applicable IPL when estimating the safety improvement of accident scenarios, the risk of OGP is 8.05E-04 and the risk of LOPA is 1.00E-04, According to the case of IPL, the risk is 1.34E-02. The optimal risk level for accident scenarios using LOPA was $10^{-2}$, but the appropriate risk criteria for accident scenarios in foreign similar studies were $10^{-3}{\sim}10^{-4}$, the risk of a scenario can be determined at an unacceptable level. When OGP is applied, it is analyzed as acceptable level, but in case of applying LOPA, all applicable IPL should be applied in order to satisfy the acceptable risk level. Compared to OGP, the risk is high when LOPA is applied. Therefore, the acceptable risk level should be set differently for each risk method.

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.

Analysis of Influential Factors on Nitrate Distribution in Ground Water in an Urbanizing Area using GIS (도시화 지역에서 GIS를 이용한 지하수 질산성질소 분포 영향요인 분석)

  • Won J.S.;Woo N.C.;Kim Y.J.
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.647-655
    • /
    • 2004
  • To identify the influential factors and their relative significance on spatial distribution of $NO_3-N$ in urban ground water, spatial analysis was conducted using GIS and statistical approaches in the Seongnae-Koduk watersheds, where rapid urbanization has been proceeded. Several factors were considered including land-use type, distance to sewage lines, the ratio of impervious surface, and the ratio of green area. The spatial distribution of $NO_3-N$ in the land-use types shows differences between urban and crop field possibly due to the sewage networks in urban areas and the agrochemical uses in crop field. Nitrate concentrations in ground water were decreased with the distance to sewage lines to approximately 60-75 m. Concentrations of nitrate and distances to sewage lines showed negative correlation, indicating that the nitrate contamination was induced from the sewage system and specially significant in urban areas. The negative correlation of the ratio of impervious surface to the nitrate concentration in urban areas also suggested that the source materials of nitrate are introduced from the surface. Consequently, in areas of urbanization processes, systematic management of past-and-present land-use types and sewage systems are the most significant factors in preventing ground water from nitrate contamination.

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.