• Title/Summary/Keyword: Environmental Exposure

Search Result 3,834, Processing Time 0.032 seconds

Impact of Urban Thermal Environment Improvement by Street Trees and Pavement Surface Albedo (가로수와 바닥 포장 표면 알베도의 도시 열 환경 개선 효과)

  • Na-youn Kim;Eun-sub Kim;Seok-hwan Yun;Zheng-gang Piao;Sang-hyuck Kim;Sang-jun Nam;Hwa-Jun Jea;Dong-kun Lee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.47-59
    • /
    • 2023
  • Due to climate change and urbanization, abnormally high temperatures and heat waves are expected to increase in urban and deteriorate thermal comfort. Planting of street trees and changing the albedo of urban surfaces are the strategies for mitigating the thermal environment of urban, and both of these strategies affect the exposure and blocking of radiative fluxes to pedestrians. After measuring the shortwave and longwave radiation according to the ground surface with different albedo and the presence of street trees using the CNR4 net radiometer, this study analyzed the relationship between this two strategies in terms of thermal environment mitigation by calculating the MRT(Mean Radiant Temperature) of each environment. As a result of comparing the difference between the downward shortwave radiation measured under the right tree and at the control, the shortwave radiation blocking effect of the tree increased as the downward shortwave radiation increased. During daytime hours (from 11 am to 3 pm), the MRT difference caused by the albedo difference(The albedo of the surfaces are 0.479 and 0.131, respectively.) on surfaces with no tree is approximately 3.58℃. When tree is present, the MRT difference caused by the albedo difference is approximately 0.49℃. In addition, in the case of the light-colored ground surface with high albedo, the surface temperature was low and the range of temperature change was lower than the surrounding surface with low albedo. This result shows that the urban thermal environment can be midigate through the planting of street trees, and that the ground surface with high albedo can be considered for short pedestrians. These results can be utilized in planning street and open space in urban by choosing surfaces with high albedo along with the shading effect of vegetation, considering the use by various users.

Review Paper for Characterization of Photoionization Detector-Direct Reading Monitors (산업현장에 활용되는 PID 직독식장비의 특성 고찰)

  • Sungho Kim;Hae Dong Park;Eunsong Hwang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 2023
  • Objectives: With the evolution of direct reading sensors, it is possible to monitor several substances through telecommunication. However, there are some limitations on the use of direct reading technologies in the Occupational Safety and Health Act in South Korea, which only applies to detector tubes, noise, heat, and carbon monoxides. The number of chemicals and their amount of use have been continuously increasing in South Korea. The Ministry of Employment and Labor (MoEL) has concerns about worker's health because exposure is only covered for about 1.2% of all distributed chemicals. Using a direct reading monitor with photoionization detectors (PID-DRMs), gases and vapors chemicals can be measured. Based on the data, business owners are able to create corrective strategies, provide better working routines, and select correct respiratory equipment. PID-DRMs are less expensive and easier to handle for an owner voluntarily controlling chemicals emitted in the workplace. However, there are several limitations on using these PID-DRMs to the degree that the MoEL has not been able to select a legal monitor. The aim of this study was to review previous studies related to PID-DRMs and identify the characterization and limitation on PID-DRMs. Methods: To search for related studies on PID-DRMs, key words were used including direct reading monitors/instruments and/or photoionization detectors. Through that, four domestic and 15 international studies were reviewed. Results: Studies on PID-DRMs were conducted by chamber (enclosed, dynamic, walk-in) and in the field (experimental environment, actual environment). The concentration of PID-DRMs and charcoal tubes were compared for a single substance or mixture, or within the PID-DRMs. There was a high correlation between the two concentrations, but it did not meet the accuracy criteria (95% confidence interval, within 25%) of the NIOSH technical report (2012). In addition, differences in measured values occurred according to environmental factors (temperature, humidity) and high concentration, and concentration values tended to be underestimated due to contamination of the sensor. As a way to improve the accuracy of PID concentration, it was proposed to use correction factors, charcoal tube-based correction factors, or to calibrate the PID-DRMs in the same environment as the workplace. Conclusions: PID-DRMs can likely be used by business owners for the purpose of voluntarily managing the workplace environment, and it is expected that it will be possible to use them as legal equipment if a PID sensor can be upgraded and the limitations of the sensor (temperature, humidity, high concentration evaluation, sensor pollution) can be overcome in the near future.

Analysis and risk assessment of formaldehyde in water from water purification plant in korea (국내 정수장 먹는 물 중 폼알데히드 함유실태 조사 및 위해성 평가 연구)

  • Chae, Hyojin;Kim, Hyun Ku;Kim, Seungki;Pyo, Heesoo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.386-394
    • /
    • 2009
  • Formaldehyde is used in lether manufacture, a dry plate and an explosive. It is by-product of ozonizing process in filtration plant. The effects of exposure are eye pruritus, tickle, runing nose, blocking nasal passages and headache. It also makes a dried throat and causes inflammation. It is classified as B1 group for inhalation by US. EPA, which can cause cancer in human. For analysis of formaldehyde, formaldehydes-DNPH derivative was extracted with solid cartridge and was analyzed by High Performance Liquid Chromatography/Diode Array Detector (HPLC/DAD). The detection limit was $3{\mu}g/L$ and the recoveries were 72.3~109.1% (RSD 2.9~11.5%). Water samples were collected in four Korean rivers, four times per year seasonally for 10 years from 1998 to 2007. The monitoring results were 48.8% (630/1291), $5.15{\sim}101.9{\mu}g/L$ in purified water. Because of non-carcinogen in drinking water, hazard index is calculated with RfD. Results of excess cnacer risk was below 1 and was considered as safe value.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

Investigation of Artificial Sweeteners in Makgeolli Distributed in South Korea Using HPLC (HPLC를 이용한 국내 유통 막걸리 내 인공감미료 함량 조사)

  • Hyewon Shin;Minseo Kim;Yeji Kim;Nayeon Park;Younglim Kho
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.289-294
    • /
    • 2023
  • Background: Artificial sweeteners are chemically synthesized substances used to add sweetness to foods. Representative substances include aspartame and acesulfame-K, which are 200 times sweeter than sugar. Recently, the IARC classified aspartame as class 2B, but Ministry of Food and Drug Safety of South Korea announced that it would maintain the current usage standards. Acesulfame-K, which has the potential to cause cancer, was excluded from the list of possible carcinogens, raising questions about its safety. According to a survey by the Consumers Union of Korea, 85% of makgeolli includes artificial sweeteners, but the content labelling is not indicated. It is necessary to accurately determine the intake of artificial sweeteners through makgeolli. Objectives: This study aims to evaluate the safety of makgeolli consumption by identifying the content of artificial sweeteners (aspartame, acesulfam-K) and preservatives (sorbic acid). Methods: Twenty makgeolli samples were purchased from large supermarkets and convenience stores by referring to the sales ranking of makgeolli products distributed in South Korea and the purchase ranking from online sites. The sample was sonicated to remove alcohol and carbon dioxide. Nine mL of acetonitrile was mixed with 1 mL of the prepared sample, centrifuged, and the supernatant was filtered and analyzed using HPLC. Results: As a result of the analysis, aspartame was detected in 17 products and acesulfame-K was detected in ten. The ADI of aspartame (40 mg/kg·bw/day) is higher than the EDI based on the maximum concentration 126.5 ㎍/mL. The ADI of acesulfame-K (15 mg/kg·bw/day) is higher than the EDI based on the highest concentration of 82.96 ㎍/mL. Although the health risk is low, IARC has raised the possibility of aspartame causing carcinogenesis, so there is a need to reevaluate the standards and regulations for artificial sweeteners. Conclusions: Through this study, we aimed to determine the content of aspartame and acesulfame-K contained in makgeolli currently distributed in South Korea and the safety of exposure to the human body when consumed.

Air Quality Monitoring in Residential Areas near Ports and Industrial Complexes in Busan (부산시 항만 및 산단 인근 주거지역 대기질 모니터링과 분기별 특성확인)

  • Hyunji Ju;Seungho Lee;Minjung Kim;Gabeen Lee;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-190
    • /
    • 2024
  • Background: Air pollutants have been reported to have harmful effects on human health. Busan is a vulnerable area in terms of air quality due to the installation of various industrial complexes, particularly the port industry. However there is limited research data on the ambient air quality of residential areas near ports and industrial complexes. Objectives: This study aimed to determine the quarterly levels of air pollutants near industrial complexes and ports and to identify trends and characteristics of air pollutant exceedances. Methods: Air measurements were conducted quarterly. The measured air pollutants included O3, SO2, CO, NO2, PM10, and PM2.5. PM10 and PM2.5 were measured using BAM-1020 equipment, while O3, SO2, CO, and NO2 were measured using AP-370 Series equipment. The quarterly concentration levels of air pollutants were determined, and the influence of precipitation and commuting hours on fine particulate matter was examined. Analysis of variance (ANOVA) was conducted to determine if there was significance between the concentrations of fine particulate matter during commuting hours and non-commuting hours. Results: The concentrations of air pollutants were generally higher in the first and second quarters. Furthermore, the concentrations of PM10 and PM2.5 tended to decrease continuously following consecutive rainfall, with concentrations at the end of rainfall periods lower than those observed at the beginning. The frequency of exceeding average concentrations of PM10 and PM2.5 was higher on weekdays. Moreover, the average concentrations of PM10 and PM2.5 during weekday commuting hours were higher compared to non-commuting hours. Conclusions: The concentrations of air pollutants in the survey area were found to be higher than the overall average in Busan. Based on this study, continuous air quality monitoring is necessary for residential areas near industrial complexes and ports. For further research, health biomonitoring of residents in these areas should be conducted to assess their exposure levels.

Human Risk Assessment for Exposure to Heavy Metals within Finishing Materials of Playground Facilities for Children in Gwangju (광주지역 어린이 놀이시설 마감재의 중금속 노출에 의한 인체 위해성평가)

  • Sang-Hoon Yoon;So-Young Kim;Eun Cho;Tae-Hui Nam;Jin-Hwan Park;Hwa-Jin Kong;Ki-Won Lee;Gwang-Yeob Seo;Jeong-Hun Park;Kyoung-Woo Min
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.146-156
    • /
    • 2024
  • Background: Children who use playground facilities are exposed to potential risks due to the high concentration of heavy metals contained in the finishing materials of facilities in children's playgrounds. Objectives: The purpose of this study was to investigate the concentration of heavy metals in the finishing materials of outdoor children's playgrounds where harmful heavy metals exist in Gwangju and to conduct human risk assessment for children and adults by age to find the risks and limitations. Methods: The bottom and top layers of double-painted paint were peeled off and collected together from the finishing materials of children's play facilities such as slides, swings, and seesaws in 147 children's parks in Gwangju. Heavy metals were analyzed using ICP-OES, etc., and human risk assessment was performed using the concentrations of heavy metals. Results: Based on 1.0E-04, which requires legal regulation, CTE was found to pose a carcinogenic risk for preschool children and no carcinogenic risk for the rest of the age groups. However, RME showed that both men and women of all ages had a carcinogenic risk. For reference, when the carcinogenic risk was based on 1.0E-06, CTE was found to pose a carcinogenic risk from infants to elementary school students, and RME was found to have a carcinogenic risk in all age groups. It was judged that there is a non-carcinogenic risk if the non-carcinogenic risk exceeds 1 based on the hazard index (HI) 1. In CTE, there was no non-carcinogenic risk, and RME for preschooler males (1.49E+00) and females (1.56E+00) were found to have non-carcinogenic risk. Conclusions: This study was meaningful in that it examines the differences in the current management of heavy metals concentration standards and potential carcinogenic and non-carcinogenic risks to the human body and discusses the relationship between heavy metals and human health effects.

Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound (초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교)

  • Park, Jong-Sung;Park, So-Young;Oh, Je-Ill;Jeong, Sang-Jo;Lee, Min-Ju;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2009
  • Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from $15^{\circ}C$ to $40^{\circ}C$ resulted in reduction of naphthalene degradation efficiency ($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% ${\rightarrow}$pH 3: 95.6%). Pseudo first-order constants ($k_1$) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: $27.3{\times}10^{-3}\;min^{-3}\;{\rightarrow}$ 10 ppm : $19.3{\times}10^{-3}\;min^{-3}$). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its $k_1$ constant was increased by 2.3 times (132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). $H_2O_2$ concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of $H_2O_2$ under 28 kHz being 1.1 times greater than that under 132 kHz.) The $H_2O_2$ concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and $k_1$ was calculated into $22.8{\times}10^{-3}\;min^{-1}$ and $18.7{\times}10^{-3}\;min^{-1}$ respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while $H_2O_2$ concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical.

Cadmium Concentrations in Environmental Tobacco Smoke of Indoor Environments (실내환경의 환경성담배연기(ETS) 중 카드뮴에 관한 연구)

  • Ha, Kwon Chul;Park, Dong-Uk;Yoon, Chung Sik
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.299-308
    • /
    • 2003
  • The purpose of this study is to investigate cadmium concentrations among metals in ETS (Environmental Tobacco Smoke) of indoor environments and to evaluate the cadmium as a marker of ETS. The correlations of cadmium concentrations and nicotine, 3-EP, RSP, SD (Smoking Density), and SI (Smoking Index). Air samples of metals, nicotine, 3-EP, and RSP were taken in smoking room, smoking allowed office, corridor outside smoking room, and non-smoking office respectively. The SD, ACH, and SI were investigated during sampling. Airborne concentration of cadmium known as human carcinogen were qualified and quantified. The SD was 0.2 to $2.6cig/m^2{\cdot}hr$, and the mean value of SD in smoking rooms was $1.2cig/m^2{\cdot}hr$ that is higher than other researches. The mean of ACH in smoking rooms was 11.1. The concentrations of cadmium showed log-normal distributions and the geometric mean concentrations of cadmium in smoking rooms, corridor outside smoking rooms, smoking allowed offices, and non-smoking offices were $0.045{\mu}g/m^3$, $0.018{\mu}g/m^3$, $0.021{\mu}g/m^3$, and $0.017{\mu}g/m^3$ respectively. The concentrations of cadmium in smoking room showed significant difference according to category of indoor office environments (p<0.05) and showed compliance with occupational exposure limits. The correlation coefficients between cadmium and nicotine, 3-EP, and RSP were 0.53, 0.41, 0.43 respectively. The cadmium among metals showed the highest correlations (r=0.63) with SI. It was recommended cadmium among metals is a good indicator for ETS.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.