• Title/Summary/Keyword: Environmental Decontamination

Search Result 79, Processing Time 0.024 seconds

Decontamination of Waste Water Polluted with Phenolic and Anilinic Compounds Using Plant Materials (식물체를 이용한 Phenol 및 Aniline성 폐수의 정화)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.228-233
    • /
    • 2000
  • This study was carried out to estimate the possibility on the removal of phenols and anilines, which were contained in pulp or dye waste water, and the reusability of plant materials, shepherd's purse and turnip. Most of phenols catalyzed with shepherd's purse were removed more than 90% in the presence of $H_2O_2$, and the removal was ranged from 53.1% for 2,6-DMP to more than 99% for 2,4,6-TCP when turnip was used as catalysts. The removal of anilines catalyzed with shepherd's purse was ranged from 42.2% for 2-CA to 78.7% for 3,4-DCA in the presence of $H_2O_2$, and in case of turnip, from 31.5% for 2-CA to 90.0 % for 2,4-DCA. The reuse of plant materials was proved to be possible for not only the batch method but also the continuous method. No decreasing removal was observed during 30 cycles in waster water contaminated with 100ppm of 2,4-DCP. However, it was observed that the removal was decreased with increasing the number of cycles in higher concentration of 2,4-DCP(800ppm). Therefore, it could be suggested that the number of reusable cycles depends on the initial concentration of substrates.

  • PDF

A Study on the Threat of Biological Terrorism in modern society (현대사회의 환경변화에 따른 Bio-Terror의 위협요인 연구)

  • Kang, young-sook;Kim, Tae-hwan
    • Journal of the Society of Disaster Information
    • /
    • v.1 no.1
    • /
    • pp.3-26
    • /
    • 2005
  • In recent years, there is growing concern about the potential use of biological agents in war or acts of terrorism accompanied an increased realization that rapid preparedness and response are needed to prevent or treat the human damage that can be caused by these agents. The threat is indeed serious, and the potential for devastating numbers of casualties is high. The use of agents as weapons, even on a small scale, has the potential for huge social and economic disruption and massive diversion of regional and national resources to combat the threat, to treat primary disease, and to clean up environmental contamination. Biological weapons are one of weapons of mass destruction (or mass casualty weapons, to be precise. since they do not damage non-living entities) that are based on bacteria, viruses, rickettsia, fungi or toxins produced by these organisms. Biological weapons are known to be easy and cheap to produce and can be used to selectively target humans, animals, or plants. Theses agents can cause large numbers of casualties with minimal logistical requirements (in wide area). The spread of disease cannot be controlled until there is awareness of the signs of infection followed by identification of agents; and if the organism is easily spread from person to person, as in the case of smallpox, the number of casualties could run into the tens of thousands. Biological weapons could be used covertly, there can be a lot of different deployment scenarios. A lot of different agents could be used in biological weapons. And, there are a lot of different techniques to manufacture biological weapons. Terrorist acts that make use of Biological Agents differ in a number of ways from those involving chemicals. The distinction between terrorist and military use of Biological Weapon is increasingly problematic. The stealthy qualities of biological weapons further complicate the distinction between terrorism and war. In reality, all biological attacks are likely to require an integrated response involving both military and civilian communities. The basic considerations when public health agencies establish national defence plan against bioterrorism must be 1) arraying various laws and regulations to meet the realistic needs, 2)education for public health personnels and support of concerned academic society, 3)information collection and cooperative project with other countries, 4)Detection and surveillance(Early detection is essential for ensuring a prompt response to biological or chemical attack, including the provision of prophylactic medicines, chemical antidotes, or vaccines) and 5) Response(A comprehensive public health response to a biological or chemical terrorist event involves epidemiologic investigation, medical treatment and prophylaxis for affacted persons, and the initiation of disease prevention or environmental decontamination measures). The purpose of this paper is providing basic material of preparedness and response for biological terrorism in modern society.

  • PDF

Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli (비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과)

  • Kim, Keyyoung;Paik, Namwon;Kim, Yonghee;Yoo, Kwanho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

A Study on Strengthening Consequence Management System Against CBRN Threats (CBRN 위협에 대비한 사후관리체계 강화방안)

  • Kwon, Hyuckshin;Kwak, Minsu;Kim, Kwanheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • North Korea declared itself complete with nuclear force after its sixth nuclear test in 2017. Despite efforts at home and abroad to denuclearize the Korean Peninsula, the prospects for the denuclearization are not bright. Along with political and diplomatic efforts to deter NK's WMD threats, the government is required to strengthen its consequence management capabilities against 'catastrophic situations' expected in case of emergency. Accordingly, this study was conducted to present measures to strengthen follow-up management against CBRN threats. The research model was partially supplemented and utilized by the THIRA process adopted and utilized by the U.S. Department of Homeland Security among national-level disaster management plan development models. Korea's consequence management (CM) system encompasses risk and crisis management on disaster condition. The system has been carried out in the form of a civil, government and military integrated defense operations for the purpose of curbing the spread or use of CBRNs, responding to threats, and minimizing expected damages. The preventive stage call for the incorporation of CBRN concept and CM procedures into the national management system, supplementing the integrated alarm systems, preparation of evacuation facilities, and establishment of the integrated training systems. In the preparation phase, readjustment of relevant laws and manuals, maintenance of government organizations, developing performance procedures, establishing the on-site support systems, and regular training are essential. In the response phase, normal operations of the medical support system for first aid and relief, installation and operation of facilities for decontamination, and development of regional damage assessment and control guidelines are important. In the recovery phase, development of stabilization evaluation criteria and procedures, securing and operation of resources needed for damage recovery, and strengthening of regional damage recovery capabilities linked to local defense forces, reserve forces and civil defense committees are required.

A Study on the Assessment of Source-term for PWR Primary System Using MonteCarlo Code (MonteCarlo 코드를 이용한 PWR 일차 계통 선원항 평가에 관한 연구)

  • Song, Jong Soon;Lee, Sang Heon;Shin, Seung Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.331-337
    • /
    • 2018
  • The decommissioning of nuclear power plants is generally executed in five steps, including preparation, decontamination, cutting/demolition, waste disposal and environmental restoration. So, for efficient decommissioning of nuclear power plants, worker safety, effects compared to cost, minimization of waste, possibility of reuse, etc., shall be considered. Worker safety and measurement technology shall be secured to exert optimal efficiency of nuclear power plant decommissioning work, for which accurate measurement technology for systems and devices is necessary. Typical In-Situ methods for decommissioning of nuclear plants are CZT, Gamma Camera and ISOCS. This study used ISOCS, which can be applied during the decommissioning of a nuclear power plant site without collecting representative samples, to take measurements of the S/G Water Chamber. To validate the measurement values, Microshield and the GEANT4 code was used as the actual method were used for modeling, respectively. The comparison showed a difference of $1.0{\times}10^1Bq$, which indicates that it will be possible to reduce errors due to the influence of radiation in the natural environment and the precision of modeling. Based on the research results of this paper, accuracy and reliability of measurement values will be analyzed and the applicability of the direct measurement method during the decommissioning of NPPs will be assessed.

A Study on Environmental Monitoring of Fluorouracil and Decontamination Reagents (Fluorouracil의 환경감시 및 제거약제에 관한 연구)

  • Lee, Su-Gil;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.47-52
    • /
    • 2009
  • This study has been to examine the occupational exposure levels of Fluorouracil (5-FU) in a hospital and to investigate the most effective cleaning reagent for control. Fluorouracil is one of the cytotoxic drugs which are therapeutic agents used to treat cancer. The health practitioners working in the cytotoxic work room and oncology ward areas are exposed to adverse health risks like cytogenetic and DNA damage from cytotoxic drugs exposure by frequent skin contact from contaminated surfaces. Four kinds of cleaning reagents has been examined to degrade the 5-FU. It was found that 5-FU was only degraded soon after the reaction in 0.5%(w/v) NaClO solution. Therefore, 0.5%(w/v) NaClO solution has been chosen to decompose any residues on the contamination surfaces. A substantial level of contamination was found on the surfaces of cytotoxic work room and oncology ward areas. The contamination ranges of the surfaces in cytotoxic work room and oncology ward areas were from 2.0 to $13.8{\mu}g/m^2$ and 5.39 to $11.53{\mu}g/m^2$ respectively. Consequently, regulation of the occupational exposure limit, procedure of special cleaning, and the use of personal protective equipment are recommended during the manipulation and administration of the drugs to avoid skin contamination from cytotoxic drugs like 5-FU.

Radiological Safety Assessment for KAERI Incineration Plant on the Basis of Trial Burn Results (시험소각결과에 기준한 한국원자력연구소 소각시설의 방사학적 안전성 평가)

  • Yang, Hee-Chul;Kim, Bong-Hwan;Kim, Chang-Hee;Park, Won-Man;Jeong, Myung-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.109-114
    • /
    • 1998
  • Radiological safety for the conventional operation of Demonstration-Scale Incineration Plant (DSIP) was assessed on the basis of the results of trial burns using the simulated and real radioactive wastes. Radiation dose assessments for routine releases on an annual basis as well a several severe accidental releases on a short-term basis (2h) revealed that there would be no significant environmental impact when low-level waste Is incinerated in DSIP. For semivolatile radioactive cesium species, expected emission concentrations slightly exceeded 10% of maximum permissible concentration. Removal characteristics of the bag filter for condensed-phase cesium species was investigated by the trial burns of simulated waste with inactive cesium tracer. In the off-gas before passing through bag filter, distributions of condensed cesium species in the transition size ranging between the diffusional and inertial region are less than 5%. The overall collection efficiency of the bag filter for cesium species was higher than 99.9%, showing enough decontamination capability as a primary filter for the low-temperature dry off-gas system in radwaste incineration plant.

  • PDF

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.