As the types and usage of chemical increase, modern countries should protect their health and environment from the risk of hazardous chemical. Chemical accidents not only affect humans but also cause huge losses to the environment. Moreover, since its effects do not end in a short period of time, it is necessary to identify the extent of the damage and establish a prevention and response system in advance. In 2015, the Chemical Substances Management Act provided a system for assessing the impact on the people and the environment around the workplace. However, it is difficult to quantitatively evaluate the impact on environmental factors such as vegetation and aquatic, with the current hazard assessment methods. The purpose of this study is to analyze the quantitative risk of environmental receptors. This study improved the existing risk assessment formula by using the environmental vulnerability index and established the end point concentration criterion which can estimate the damage range to environmental media. To verify the results of the study, a virtual accident scenario was selected and a case study was conducted. As a result, the extent of impact on the environmental medium can be calculated, and the degree of environmental risk of the zone can be quantified through the risk analysis considering the environmental vulnerability. This study is expected to increase the reliability of the reliability of the existing risk anaylsis method beacause it is a risk analysis method that can be applied when the environmental factors are absolutely necessary and when the residents and environment are complex.
The aim of this paper is to compare wavelet, kurtosis and pseudofractal based techniques for structural health monitoring in the presence of measurement noise. A detailed comparison and assessment of these techniques have been carried out in this paper through numerical experiments for the calibration of damage extent of a simply supported beam with an open crack serving as an illustrative example. The numerical experiments are deemed critical due to limited amount of experimental data available in the field of singularity based detection of damage. A continuous detectibility map has been proposed for comparing various techniques qualitatively. Efficiency surfaces have been constructed for wavelet, kurtosis and pseudofractal based calibration of damage extent as a function of damage location and measurement noise level. Levels of noise have been identified for each technique where a sudden drop of calibration efficiency is observed marking the onset of damage masking regime by measurement noise.
At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.
Significant costs to the public and private sectors due to recent extreme wind events have motivated the need for systematic post-hurricane damage data collection and analysis. Current post disaster data are collected by many different interested groups such as government agencies, voluntary disaster relief agencies, representatives of media companies, academicians and companies in the private sector. Each group has an interest in a particular type of data. However, members of each group collect data using different techniques. This disparity in data is not conducive to quantifying damage data and, therefore, inhibits the statistical and spatial description of damage and comparisons of damage among different extreme wind events. The data collection does not allow comparisons of data or results of analyses within a group and also prohibits comparison of damage data and information among different groups. Typically, analyses of data from a given event lead to different conclusion depending upon the definition of damage used by individual investigators and the type of data collected making it difficult for members of groups to compare the results of their analyses with a common language and basis. A formal method of data collection and analysis-within any single group-would allow comparisons to be made among different individuals, hazardous events and eventually among different groups, thus facilitating the management and reduction of damage due to future disaster. This research introduces a definition of damage to single family dwellings, and a common method of data collection and analysis suited for groups interested in regional characterization of damage. The current state-of-data is presented and a method for data collection is recommended based on these existing data collection methods. A fixed-scale damage index is proposed to consider the damage to a dwelling's feature. Finally, the damage index is applied to three dwellings damaged by Hurricane Iniki (1992). The damage index reflects the reduced functionality of a structure as a single family detached dwelling and provides a means to evaluate regional damage due to a single event or to compare damage due to events of different severity. Evaluation of the damage index and the data available support recommendation for future data collection efforts.
Two-step identification approaches for effective bridge health monitoring are proposed to alleviate the issues associated with many unknown parameters faced in real structures and to improve the accuracy in the estimate results. It is suitable for on-line monitoring scheme, since the damage assessment is not always needed to be carried out whereas the alarming for damages is to be continuously monitored. In the first step for screening potentially damaged members, a damage indicator method based on modal strain energy, probabilistic neural networks and the conventional neural networks using grouping technique are utilized and then the conventional neural networks technique is utilized for damage assessment on the screened members in the second step. The effectiveness of the proposed methods is investigated through a field test on the northern-most span of the old Hannam Grand Bridge over the Han River in Seoul, Korea.
건강영향평가는 개발사업 시행에 따른 사람의 건강에 미치는 영향을 예측하여 건강피해를 최소화하기 위한 목적으로 환경영향평가 내에서 시행되고 있다. 하지만 건강영향평가 시 유해대기오염물질 배출량 산정방법에 대한 일관성 부족으로 건강영향평가 매뉴얼 개선이 필요하나, 아직 개정은 되지 않고 있다. 본 연구는 실제 산업단지 개발 사례 및 기 수행된 건강영향평가를 중심으로 유해대기오염물질 배출량 산정 시 매뉴얼에 제시된 원단위 산정 방법을 다르게 적용한 4가지 사례를 선정하여 각각 배출량을 산정하였다. 각 산정된 배출량을 토대로 CALPUFF 모델을 이용한 확산농도 예측 후, 노출농도를 기준으로 위해성 평가를 시행하였다. 위해성 평가 결과, 배출량 산정 방법별 위해도 수준의 차이가 비교적 크게 나타남에 따라, 배출량 산정시 원단위 적용에 대한 매뉴얼 개선이 필요한 것으로 검토되었다. 또한 배출량 산정 시 근거자료 활용에 대한 일관성, 건강영향평가에 최적화된 배출계수 개발, 현황 조사에 대한 신뢰성 향상이 필요할 것으로 판단된다.
Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.
The Institute of Medicine of the National Academies of Science in the United States concluded in its 2004 report that excessive indoor dampness is a public health hazard and that its prevention should be a public health goal. Water damage in buildings, such as leaks from roofs, walls, or windows, may increase indoor moisture levels. Excessive dampness may promote microbial proliferation in indoor environments, increase occupants' exposure to microbial agents, and eventually produce adverse health effects in building occupants. Epidemiological studies to demonstrate the causal association between exposure to indoor microbial agents and health effects require reliable exposure assessment tools. In this review, I discuss various sampling and analytical methods to assess human exposure to biological agents in indoor environments, their strengths and weaknesses, and recent trends in research and practice in the USA.
교량에 발생하는 손상에 대한 관리 및 평가는 정기적인 점검으로 작성된 보고서와 외관조사망도 및 손상물량표를 포함한 점검 및 진단자료에 기초한다. 이러한 자료 대부분은 2D 기반의 문서형식으로 작성되어 있고, 표준화된 방식으로 디지털화하기 어려워 정해진 목적 외의 활용이 쉽지 않다. 이에 본 연구에서는 점검자료를 기반으로 손상을 포함한 BIM 기반 교량모델을 구축하는 방법을 제시하고, BIM 표준을 준용하는 유지관리용 건설정보교환표준인 COBie (Construction Operations Building Information Exchange)를 사용하여 모델로부터 도출한 스프레드시트 데이터 형식의 손상정보들을 교량모델과 연계하여 관리하고 활용하는 방법을 제시하였다. 또한 전술한 방법들을 이용해 손상이 발생한 교량 상부구조 각 부위별 상태등급을 디지털 데이터 기반으로 자동화된 방법으로 평가하는 방법을 제안하였다. 본 연구에서 제안된 방법들은 PSC I형 콘크리트 교량의 상부구조를 대상으로 검증이 이루어졌으며 그 실효성이 검증되었다.
Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.