• Title/Summary/Keyword: Environmental Damage Assessment Methods

Search Result 75, Processing Time 0.029 seconds

A Method of River Environmental Impact Assessment using LCA (LCA를 적용한 하천환경영향평가 방법)

  • Kim, Sung-Joon;Jin, Ming-Ji;Jeon, Yong-Tae;Shin, Seon-Mi;Choe, Yong-Seung;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.93-104
    • /
    • 2012
  • In this research LCA methodology was adapted and analyzed in quantifying estimation of estuarine environment. The analysed objects of estuarine environment were construction methods, facility, and input material into water, and estuarine ecosystem. In this research the function of LCA of estuarine environment was river with the view of controling water, utilizing water, and hydrophilic function. According to the result of research, environmental damage indicator of facility was decreased 346 Pt from 453 Pt at pre-maintenance to 107 pt at post-maintenance. Among raw and subsidiary materials, remicon, stone-netting bag, and pebbles were showing heavy environmental load in the order. Evironmental impact of input material into water system was analyzed from 1,827 Pt environmental load before construction to 1,080 Pt of post-maintenance, and damage indicator was improved at 747 Pt. Water quality was improved from 1,827 Pt (before construction) to 1,080 Pt(after construction), and ecosystem was improved after maintenance. Environmental indicator in ecosystem was analyzed 427 Pt(before construction) to 348 Pt(after construction), and damage indicator of Sumnjingang riverine system was improved as much as 79 Pt. In the conclusion, estuarine environmental monitoring through LCA in the area of facility, input material into water and ecosystem showed that close-to-nature stream was 1,172 Pt better than artificial stream in environmental aspects.

Damage assessment of cable stayed bridge using probabilistic neural network

  • Cho, Hyo-Nam;Choi, Young-Min;Lee, Sung-Chil;Hur, Choon-Kun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.483-492
    • /
    • 2004
  • This paper presents an efficient algorithm for the estimation of damage location and severity in bridge structures using Probabilistic Neural Network (PNN). Generally, the Back Propagation Neural Network (BPNN)-based damage detection methods need a lot of training patterns for neural network learning process and the optimum architecture of a BPNN is selected by trial and error. In this paper, the PNN instead of the conventional BPNN is used as a pattern classifier. The modal properties of damaged structure are somewhat different from those of undamaged one. The basic idea of proposed algorithm is that the PNN classifies a test pattern which consists of the modal characteristics from damaged structure, how close it is to each training pattern which is composed of the modal characteristics from various structural damage cases. In this algorithm, two PNNs are sequentially used. The first PNN estimates the damage location using mode shape and the results of the first PNN are put into the second PNN for the damage severity estimation using natural frequency. The proposed damage assessment algorithm using the PNN is applied to a cable-stayed bridge to verify its applicability.

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Compensation for Injury to Publicly Owned Marine Resources : Legal and Economic Aspects (해양 공공자연자원 피해보상의 법.경제적 평가)

  • 표희동;이흥동
    • The Journal of Fisheries Business Administration
    • /
    • v.22 no.2
    • /
    • pp.53-74
    • /
    • 1991
  • Interest on ocean environment has increased with the development of industrialized activities. Public marine resorces are defined broadly to include fish stocks, beaches, marine waters, recreational fishing, biota, waterfowls, shorebirds, seabirds and marine mammals But, it is not easy to analyze compensation for injury to publicly owned marine resources because the claimants do not exist clearly and the economic methodology of damage on public goods is not developed fully. This paper introduces basic idea of welfare economic theory and environmental legislation to the research question : How the economics and law can be applied to the case of damage on publicly owned marine resource. The paper discusses the concepts of willingness to pay (WTP) and willingness to accept (WTA). It is accepted generally that WTA is correct concept of welfare change in the case of damaged public goods. Four methods (compensating variation, equivalent variation, compensating surplus, equivalent surplus of measuring welfare changes are compared. Compensating variation(CV) is the best measure of welfare changes are compared. Compensating variation(CV) is the best measure of welfare changes caused by environmental damage. Vartia (1983) showed CV could be measured from the ordinary demand function using the differential equations. This paper also provides an overview of the emerging U.S. and Korea legal system for compensation for natural resource damages, with particular emphasis on U.S. legal system under Comprehensive Environmen-tal Response Compensation and Liability Act (CERCLA). These regulations are to include two different types of standardized procedures for assessing natural resources injury : Type A or simplified assessment techniques for small releases ; and Type B protocols that would include detailed and extensive assessment methodologies for major releases. Type A procedures are specified by Natural Resources Damage Assessment Model for Coastal and Marine Environment (NRDAM/CME) of the U.S. CERCLA provides a legal 'legitimization for the use of economic-based nonmarket valuation in the courts and have introduced appropriate and accurate nonmarket valuation methods based on willingness to-pay for damage assessment. By briefly reviewing economic theory and environmental legislation, we hope to help provide a better understanding of the compensation process and the economics of publicly owned marine resources in the U.S. and to integrate the economics and law of natural resources valuation into a single comprehensive package in Korea.

  • PDF

Damage assessment of structures according to the excavation methods (굴착방법에 따른 구조물의 손상도 평가)

  • Jeon, Jae-Hyun;Park, Jong-Deok;Lim, Young-Duck;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.161-173
    • /
    • 2013
  • When the ground is excavated near the pre-existing structures due to the region restricted condition such as urban area, the ground will be released by the excavation and the temporary wall will be deformed depending on the earth pressure. In this case, issues can be created in terms of stability of pre-existing structures. Firstly, the laboratory model tests were carried out to investigate the ground surface settlement due to the ground excavation according to the excavation methods in this study. Using the ground surface settlement results from model tests, numerical analyses were carried out to study the structure deformation due to the ground excavation according to the excavation methods. Finally, using the structure deformation results from numerical analysis, the damage assessment of structures was carried out by using the strain damage estimation criterion.

Improvement of the EIA for Land Reclamation Projects in the Coastal Areas of Korea (해양매립사업 환경영향평가의 개선방안)

  • Jang, Ju-Hyoung;Eom, Ki-Hyuk;Kwon, Kee-Young;Hong, Sok-Jin;Park, Jae-Hyeon;Kim, Gui-Young
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.847-853
    • /
    • 2007
  • In Korean coastal areas, land reclamations are main development projects that should be based on environmental impact assessment(EIA), because those human interventions can change coastlines, damage tidal flats, and pollute adjacent areas to threat seafood safety and devaluate overall ecosystem service value. Existing procedures of the EIA for land reclamation projects were diagnosed and evaluated to enhance them. Problems were identified in the designation of survey areas, the consistency in survey sites and periods, the standardization of survey methods and reports, the confidence of survey results and the verification of predictions. Lack of integration was noticeable and could be improved by synthesizing different assessments from topography geography, marine physics, marine chemistry and marine biology. We suggest that successful precautionary marine environment management requires readjusting the cost of EIA, recruiting experts in marine environment, constructing database and establishing specialized assessment system.

Suggestion of the defect score and condition grading protocol about sewer pipe (하수관로 결함 점수 및 상태 등급 판정 방법 제안)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of 'Hole' were extended to 5 levels of the grading, and 'Surface Damage' was excluded in defect assessment. The addition of 'Buckling' resulted in reduction of weights in 'Surface Damage' and 'Lining Defects'.

Risk-Based Damage Cost Estimation on Mortality Due to Environmental Problems (환경 오염으로 인한 인체 위해도에 입각한 사망 손실 비용 추정에 관한 연구)

  • Kim, Ye-Shin;Lee, Yong-Jin;Park, Hoa-Sung;Shin, Dong-Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • Objectives : To estimate the value of statistical life (VSL) and health damage cost on theoretical mortality estimates due to environmental pollution. Methods : We assessed the health risk on three environmental problems and eight sub-problems. Willingness to pay (WTP) was elucidated from a questionnaire survey with dichotomous contingent valuation method and VSL (which is the division of WTP by the change of risk reduction) calculated from WTP. Damage costs were estimated by multiplying VSL by the theoretical mortality estimates. Results : VSLs from death caused by air pollution, indoor air pollution and drinking water contamination were about 0.3, 0.5 and 0.3 billion won, respectively. Damage costs of particulate matters ($PM_{10}$) and radon were higher in the sub-problems and were above 100 billion won. Because damage cost depends on theoretical mortality estimate and WTP, its uncertainty is reduced in the estimating process. Conclusion : Health damage cost or risk benefit should be considered as one scientific criterion for decision making in environmental policy.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.