• Title/Summary/Keyword: Environmental Change

Search Result 8,681, Processing Time 0.042 seconds

A Study on the Correlation between Marine Industry Cluster and Port Regeneration - Focused on the Busan North Port - (해양산업 클러스터와 항만도시재생의 상관성에 관한 연구 - 부산 북항을 중심으로 -)

  • Li, Yun-Zhang;Yang, Ming-Yin;Tian, Xue-Qin;Yu, Yong-Hao;Choi, Tae-Yeong
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • As Asia's leading advanced country, Korea has an absolute advantage over foreign trade routes and maritime economies over inland countries. Following the change in social background, the original port area is for various reasons, and some ills are gradually revealing people's private interests. Due to this, it is the economic interest and future development space of the marine industry cluster in the port area that are directly affected and damaged. This study studied the relationship between marine industry clusters and port urban regeneration. It is intended to present the necessity and importance of activating the marine industry cluster through port urban regeneration while analyzing the regenerative design from the quantitative analysis angle. Therefore, first of all, the theoretical backgrounds were considered, and the cases of port cities that did well worldwide were analyzed according to the current status of the northern port of Busan, the research target site, through analysis. In addition, in order to increase the reliability of this study, the data of marine industry clusters and port city regeneration were reviewed using empirical analysis. Looking at the results of this study's case study and empirical analysis, it is a relationship that actually improved and interacted between the marine industry cluster and the port city regeneration. Through the study, it is expected that the Busan North Port Redevelopment Project will be promoted at the design, environmental, and economic level, and at the same time, it will be able to enhance its status as a marine city in Busan. The results show that, no matter which country or port city, the development of economy, society, culture and will inevitably promote the vigorous development of the marine industrial cluster, also, the port area development to a certain degree. will naturally the physical conditions of regional development obstacle through the port city of regeneration. This promotion will overcome.

Development and Application of Instrument for Level Scale of the Systems Thinking Ability about Carbon Cycle (탄소 순환에 대한 시스템 사고 능력 수준 측정을 위한 검사도구 개발 및 적용)

  • Jeon, Jaedon;Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.4
    • /
    • pp.397-415
    • /
    • 2022
  • As the global warming problem becomes serious, the need for carbon cycle education in school is increasing. Adopting systems thinking ability is needed to understand the carbon cycle systematically. Furthermore, under the rapid change of environment, society, and economy, systems thinking ability is being emphasized as it can strengthen the competencies of students who will be leading the future society. The purposes of this study are as follows: first, is developing the systems thinking instrument for the carbon cycle and the rubric for analysis of systems thinking instrument. The second is analyzing the systems thinking ability of students using the developed instrument and rubric. In order to perform this study, previous studies related to the carbon cycle and systems thinking education were analyzed. Based on the analysis results, the systems thinking instrument for the carbon cycle and rubric were developed. The systems thinking ability was analyzed by implementing the developed instrument and rubric to 172 high school and university students. The results of this study are as follows: first, the systems thinking instrument for the carbon cycle was developed, and a rubric utilization guide was constructed. The instrument and rubric were modified through pilot study for middle school students producing expert opinion in relation to systems thinking and carbon cycle. Second, the systems thinking ability of students was analyzed. Consequently, students had systems thinking ability fully at a low level, such as identifying the variables related to the carbon cycle. However, it was shown that they lacked the systems thinking ability at a high level, such as time delay and feedback processes. The importance of the carbon cycle has been increasing since the global warming is the most pressing issue and significant environmental problem facing us today. Application of the systems thinking ability can contribute to understanding these complex problems and finding fundamental solutions.

An Exploratory Study on the Business Failure Recovery Factors of Serial Entrepreneurs: Focusing on Small Business (연속 기업가의 사업 실패 회복요인에 관한 탐색적 연구: 소상공인을 중심으로)

  • Lee, Kyung Suk;Park, Joo Yeon;Sung, Chang Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.17-29
    • /
    • 2021
  • Recently, as social distancing have been raised due to the re-spread of COVID-19, the number of serial entrepreneurs who are closing their business is rapidly increasing. Learning from failure is a source of success, but business failure can result in psychological and economic losses and negative emotions of the serial entrepreneur. At this point, it is very important to find a way to recover the negative emotions caused by business failures of serial entrepreneurs. Recently, a strategic model has emerged to deal with the negative emotions of grief caused by business failures of serial entrepreneurs. This study identified the recovery factors from the grief of business failures of serial entrepreneurs and analyzed Shepherd's(2003) three areas: loss orientation, restoration orientation, and dual process. To this end, individual in-depth interviews were conducted with 12 small business serial entrepreneurs who challenged re-startup to identify the attributes of recovery factors that were not identified with quantitative data. As a result of the study, first, recovery factors were investigated in three areas: individual orientation, family orientation, and network orientation. It was found to help improve recovery in nine categories: self-esteem, persistence, personal competence, hobbies, self-confidence, family support, networks, religion, and social support. Second, recovery obstacle factors were investigated in three areas: psychological, economic, and environmental factors. Nine categories including family, health, social network, business partner, competitor, partner, fund, external environment, and government policy were found to persist negative emotions. Third, the emotional processing process for grief was investigated in three areas: loss orientation, restoration orientation, and dual process. Ten categories such as family, partner support, social member support, government support, hobbies, networks, change of business field, moving, third-party perspective, and meditation were confirmed to enhance rapid recovery in the emotional processing process for grief. The implications of this study are as follows. The process of recovering from the grief caused by business failures of serial entrepreneurs was attempted by a qualitative study. By extending the theory of Shepherd(2003), This study can be applied to help with recovery research. In addition, conceptual models and propositions for future empirical research were presented, which can be discussed in carious academic ways.

Development and evaluation of a nutrition education program for housewives to reduce sodium intake: application of the social cognitive theory and a transtheoretical model (주부대상 나트륨 섭취 줄이기 영양교육 프로그램 개발 및 효과 평가: 사회인지론과 행동변화단계모델 적용)

  • Ahn, Sohyun;Kwon, Jong-Sook;Kim, Kyungmin;Kim, Hye-Kyeong
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.174-187
    • /
    • 2022
  • Purpose: This study was performed to evaluate an education program for housewives to reduce sodium intake based on the social cognitive theory. Methods: Housewives (n = 387) received 2 education sessions focused on food purchase and cooking, and completed a questionnaire on their perceptions of environmental, cognitive, and behavioral factors and the stages of behavioral change to reducing sodium intake both before and after the education program. Results: After the education program, the recognition of social efforts for sodium reduction and sodium labeling and experience with low-sodium products increased. Positive expectancies for the prevention of osteoporosis by the reduction of sodium were enhanced while the main barriers in practicing sodium reduction decreased, especially 'interrupting social relationships when dining with others', 'bad taste', 'preference for soup or stew', and 'limited knowledge and skills to practice'. In addition, cognition and nutrition knowledge related to reducing sodium intake were improved on all scores, but the effect on self-efficacy and dietary behavior was limited to only a few items. The percentage of participants in the pre-action stage (including pre-contemplation, contemplation, and preparation stages) for reducing sodium intake decreased from 43.2% before education to 21.5% after education, while that in the action stage increased from 19.6% before education to 43.5% after education (p < 0.001). The education program had the most significant impact on participants who were in the pre-action stage and showed improved scores in all sections. Conclusion: These results suggest that a customized education program for housewives could be an effective tool to reduce sodium intake by improving personal expectancies, cognition, and nutrition knowledge regarding sodium reduction and enabling a greater section of the population to move to the action stage of reducing sodium intake.

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

End-use Analysis of Household Water by Metering (가정용수의 용도별 사용 원단위 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Kim, Ju Whan;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.595-601
    • /
    • 2008
  • The purpose of this study is to investigate the trends and patterns of various kind of water uses in a household by metering in Korea. Water use components are classified by toilet, washbowl, bathing, laundry, kitchen, miscellaneous. Flow meters are installed in 140 household selected by sampling in all around Korea. The data are gathered by web-based data collection system from the year 2002 to 2006, considering pre-investigated data such as occupation, revenue, family members, housing types, age, floor area, water saving devices, education, miscellaneous. Reliable data are selected by upper fence method for each observed water use component and statistical characteristics are estimated for each residential type to determine liter per capita per day. Estimated domestic per capita day show an indoor water use with the range from 150 lpcd to 169 lpcd for each housing type as the order of high rise apartment, multi-house, and single house. As the order of consuming amount among water use components, it is investigated that toilet (38.5 lpcd) is the first, and the second is laundry water (30.8 lpcd), the third is kitchen (28.4 lpcd), the fourth is bathtub (24.7 lpcd), the next is washbowl (15.4 lpcd). The results are compared with water uses in U.K. and U.S. As life style has been changed into western style, pattern of water use in Korea is tend to be similar with the U.S. water use pattern. Compared with the surveying results by Bradley, on 1985. Thirty liter of total use increased with the advancement of economic level, and a little change of water use pattern can be found. Especially, toilet water take almost half part of total water use and laundry water shows lowest as 11% in surveying at the year of 1985. But, this study shows that 39 liter, 28% of toilet water, has been decreased by the spread of saving devices and campaign. It is supposed that the spread large sized laundry machine make by-hand laundry has been decreased and water use increased. Unit water amount of each end-use in household can be applied to design factor for water and wastewater facilities, and it play a role as information in establishing water demand forecasting and conservation policy.

Analysis on Statistical Characteristics of Household Water End-uses (가정용수 용도별 사용량의 통계적 특성 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Park, No Suk;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.603-614
    • /
    • 2008
  • End-uses of household water have been changed by a life style, housing type, weather, water rate and water supply facilities etc. and those variables can be considered as an internal and exogenous factors to estimate long-term demand forecasts. Analysis of influential factors on water consumption in households would give an explanation to cause on the change of trend and would help predicting the water demand of end-use in household. The purpose of this study is to analyze the demand trends and patterns of household water uses by metering and questionnaire such as occupation, revenue, numbers of family member, housing types, age, floor area and installation of water saving device, etc. The peak water uses were shown at Saturday among weekdays and July in a year based on the analysis results of water use pattern. A steep increase of total water volume can be found in the analysis of water demand trend according to temperature from $-14^{\circ}C$ to $0^{\circ}C$, while there are no significant variations in the phase of more than $0^{\circ}C$, with an almost stable demand. Washbowl water shows the highest and toilet water shows the lowest relation with temperature in correlation analysis results. In the results of ANOVA to find the significant difference in each unit water use by exogenous factors such as housing type, occupation, number of generation, residential area and income et al., difference was shown in bathtub water by housing type and shown in kitchen, toilet and miscellaneous water by numbers of resident. Especially, definite differences in components except washbowl and bathtub water, could be found by numbers of resident. Based on the result, average residents in a house should be carefully considered and the results can be applied as reference information, in decision making process for predicting water demand and establishing water conservation policy. It is expected that these can be used as design factors in planning stage for water and wastewater facilities.

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.