• Title/Summary/Keyword: Environment scanning

Search Result 645, Processing Time 0.036 seconds

A Study on the Quality of Photometric Scanning Under Variable Illumination Conditions

  • Jeon, Hyoungjoon;Hafeez, Jahanzeb;Hamacher, Alaric;Lee, Seunghyun;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.88-95
    • /
    • 2017
  • The conventional scan methods are based on a laser scanner and a depth camera, which requires high cost and complicated post-processing. Whereas in photometric scanning method, the 3D modeling data is acquired through multi-view images. This is advantageous compared to the other methods. The quality of a photometric 3D model depends on the environmental conditions or the object characteristics, but the quality is lower as compared to other methods. Therefore, various methods for improving the quality of photometric scanning are being studied. In this paper, we aim to investigate the effect of illumination conditions on the quality of photometric scanning data. To do this, 'Moai' statue is 3D printed with a size of $600(H){\times}1,000(V){\times}600(D)$. The printed object is photographed under the hard light and soft light environments. We obtained the modeling data by photometric scanning method and compared it with the ground truth of 'Moai'. The 'Point-to-Point' method used to analyseanalyze the modeling data using open source tool 'CloudCompare'. As a result of comparison, it is confirmed that the standard deviation value of the 3D model generated under the soft light is 0.090686 and the standard deviation value of the 3D model generated under the hard light is 0.039954. This proves that the higher quality 3D modeling data can be obtained in a hard light environment. The results of this paper are expected to be applied for the acquisition of high-quality data.

A Real Time Scan Detection System against Attacks based on Port Scanning Techniques (포트 스캐닝 기법 기반의 공격을 탐지하기 위한 실시간 스캔 탐지 시스템 구현)

  • 송중석;권용진
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • Port scanning detection systems should rather satisfy a certain level of the requirement for system performance like a low rate of “False Positive” and “False Negative”, and requirement for convenience for users to be easy to manage the system security with detection systems. However, public domain Real Time Scan Detection Systems have high rate of false detection and have difficulty in detecting various scanning techniques. In addition, as current real time scan detection systems are based on command interface, the systems are poor at user interface and thus it is difficult to apply them to the system security management. Hence, we propose TkRTSD(Tcl/Tk Real Time Scan Detection System) that is able to detect various scan attacks based on port scanning techniques by applying a set of new filter rules, and minimize the rate of False Positive by applying proposed ABP-Rules derived from attacker's behavioral patterns. Also a GUI environment for TkRTSD is implemented by using Tcl/Tk for user's convenience of managing network security.

Effective Point Dataset Removal for High-Speed 3D Scanning Processes (고속 3D 스캐닝 프로세스를 위한 효과적인 점데이터 제거)

  • Lim, Sukhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1660-1665
    • /
    • 2022
  • Recently, many industries are using three dimensional scanning technology. As the performance of the 3D scanner gradually improves, a sampling step to reduce a point data or a remove step to remove a part determined to be noise are generally performed in post processing. However, total point data by long time scanning cannot be processed at once in spite of performing such those additional processes. In general, a method using a multi threaded environment is widely used, but as the scanning process work time increases, the processing performance gradually decreases due to various environmental conditions and accumulated operations. This paper proposes a method to initially remove point data judged to be unnecessary by calculating accumulated fast point feature histogram values from coming point data of the 3D scanner in real time. The entire 3D scanning process can be reduced using this approach.

Comparison of Virtual 3D Tree Modelling Using Photogrammetry Software and Laser Scanning Technology (레이저스캐닝과 포토그래메트리 소프트웨어 기술을 이용한 조경 수목 3D모델링 재현 특성 비교)

  • Park, Jae-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.304-310
    • /
    • 2020
  • The technology in 3D modelling have advanced not only maps, heritages, constructions but also trees modelling. By laser scanning(Faro s350) and photogrammetry software(Pix4d) for 3D modelling, this study compared with real coniferous tree and both technology's results about characteristics of shape, texture, and dimensions. As a result, both technologies all showed high reproducibility. The scanning technique showed very good results in the reproduction about bark and leaves. Comparing the detailed dimensions on it, the error between the actual tree and modelling with scanning was 1.7~2.2%, and the scanning result was larger than the actual tree. The error between the actual tree and photogrammetry was only 0.2~0.5%, which was larger than the actual tree. On the other hand, the dark areas's modelling was not fully processed. This study is meaningful as a basic research that can be used for tree DB on BIM for the landscape architecture, landscape design and analysis with AR technology, historical tree and heritage also.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

The Evaluation of Architectural Density on Urban District using Airborne Laser Scanning Data (항공레이저측량 자료를 이용한 시가지 건축밀도 평가에 관한 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2003
  • This study evaluated the architectural density of urban district using airborne laser scanning(ALS) that is a method used in urban planning, water resources and disaster prevention with high interest recently. First, digital elevation model(DEM) and digital surface model(DSM) was constructed from Light detection and ranging(LiDAR). For getting the height of building, ZONALMEAN filter was used in DEM and ZONALMAJORITY filter was used in DSM. This study compared the floor from filtering with the floor from survey and got standard error, which is ${\pm}0.199$ floor. Also, through the overlay and statistical analysis of total-area layer and zone layer, we could present floor area ratio by zone. As a result of comparison with floor area ratio between airborne laser scanning data and survey data, the standard error of floor area ratio shows ${\pm}2.68%$. Therefore, we expect that airborne laser scanning data can be a very efficient source to decision makers who set up landuse plan in near future.

  • PDF

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Activity of Essential Oils Against Bacillus subtilis Spores

  • Lawrence, Hayley A.;Palombo, Enzo A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1590-1595
    • /
    • 2009
  • Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to 13 essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures ($60^{\circ}C$) or longer exposure times (up to 1 week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired.

Characteristics and Temporal Distribution of Airborne Pollen in an Urban Area of Japan

  • Ma Chang-Jin;Kasahara Mikio;Tohno Susumu;Kang Gong-Unn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.107-113
    • /
    • 2005
  • Using a sampling device of our own making, airborne pollen has been monitored in Kyoto, Japan from the middle of February to the end of May 2004. From the morphological analysis of pollen grains by Scanning Electron Microscope (SEM), it was possible to identify some pollen types like Cryptomeria, Pine, Alder, Cyclobalanopsis, Chamaecyparis, and Equisetum. Daily average airborne pollen counts show strong variations from the day to day which makes the appropriate daily forecasts that could be of practical use for patients difficult. Diurnal variation of airborne pollen grains at our local sampling site is very irregular and shows no similarity between pollen types. The highest concentrations of Cryptomeria and Alder pollens in the south -west wind directions might be attributed to the airborne pollen transport, while the increase in Pine pollen grain in the southern wind direction was probably due to the local spread. Prevailing wind direction (SW) during the pollinating periods of Cryptomeria and Alder pollens could suggest a long-distance transport from a distant mountain.

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.