• 제목/요약/키워드: Environment impact

검색결과 5,302건 처리시간 0.027초

B2B 시장에서의 서비스 편의성이 관계성과에 미치는 영향 : 관계적 요인의 매개효과 분석 (Effect of Service Convenience on the Relationship Performance in B2B Markets: Mediating Effect of Relationship Factors)

  • 한상린;이성호
    • 한국유통학회지:유통연구
    • /
    • 제16권4호
    • /
    • pp.65-93
    • /
    • 2011
  • B2B 시장에서 구매자와 판매자간의 관계는 매우 밀접하고 장기화되는 것이 특징이므로 결국 단순한 제품을 판매하는 것에 그치는 것이 아닌 지속적인 서비스에 대한 중요성이 날로 커지고 있다. 산업재 연구 전반에 걸쳐서도 서비스에 대한 중요성과 관심이 증대되면서 고객이 서비스를 사용하는데 있어서 그 서비스의 품질과 함께 최근 소비자들은 얼마나 빠르고 쉽게 서비스가 제공되어 투입되는 노력을 최소화시킬 수 있는가를 매우 중요하게 생각하기 때문에 편의성이 중요한 요인으로 고려되어지고 있다. 이에 따라, 본 연구에서는 산업재 시장에서 관계만족과 관계성과를 형성하는데 중요하게 생각할 수 있는 새로운 요인이 어떤 것인가 라는 의문점에서 출발하여, 서비스 편의성과 관계성과 사이의 구조적 관계를 조사하고자 하였다. 이 연구의 가장 큰 학문적 기여점은 산업재 연구에서 주류를 이루고 있는 관계품질과 관계성과의 새로운 선행요인을 검증한 것이다. 또한 소비재 시장에서 주로 연구되었던 서비스 편의성 척도를 산업재 시장에 적용하여 그 활용도를 실험해 보았다는 데 의의가 있다. 본 연구는 서비스 편의성의 구성요소인 서비스 편의성을 결정편의성, 접근편의성, 거래편의 성, 편익편의성, 사후편익편의성 다섯가지 차원으로 구분하고 관계적 요인인 관계만족에 미치는 영향과 이러한 관계만족이 관계몰입과 관계성과에 어떠한 영향을 미치는가를 분석하여 서비스 편의성의 관리와 투자에 대한 마케팅 측면의 중요성을 제시하고 있다. 실증분석을 위해 산업재 서비스를 이용하고 있는 기업의 직원들을 대상으로 설문을 통해 데이터를 수집하였으며 서비스 편의성 ${\rightarrow}$ 관계만족 ${\rightarrow}$ 관계몰입 $\{rightarrow}$ 관계성과에 대한 인과적 구성모텔에 대해 구조방정식 모델분석으로 검증하였다. 구성모텔에 대한 분석결과 서비스 편의성을 구성하는 요소 중 접근편의성을 제외한 나머지 결정편의성, 거래편의성, 편익편의성, 사후편익편의성은 모두 관계적 요인들에 긍정적인 영향을 미쳤으며, 그 중 편익편의성이 관계적 요인에 가장 큰 영향을 주는 것으로 나타났다. 또한 추가적으로 매개효과검증을 실시하여, 서비스 편의성과 관계성과의 관계를 살펴보는데 있어서, 서비스 편의성이 관계만족과 관계몰입을 통해서 관계성과에 긍정적인 영향을 주는 구조적 인 관계를 가지고 있음을 알 수 있었다. 이는 높은 서비스 편의성에 대한 관리와 투자가 구매자로 하여금 관계에 만족하게 만들고 이렇게 형성된 관계만족은 관계에 몰입하게 하여 결과적으로는 관계성과를 가져올 수 있음을 시사한다.

  • PDF

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.