• Title/Summary/Keyword: Environment humidity

Search Result 1,651, Processing Time 0.03 seconds

A Study on the Change of Indoor Heating Environment with the Creation of Indoor Water Space through a Scale Model (축소모형을 이용한 실내 수공간 도입 효과 연구)

  • Oh, Sang Mok;Oh, Se Gyu
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.67-72
    • /
    • 2010
  • This study was conducted to examine the change of heating environment with the creation of an indoor water space. Living environments and comfort of dwellers can be improved by utilizing the physical properties of water effectively. This study focuses on the basic examination of the effect of water space and the environmental effects of water space by experiment. Two identical models were fabricated to compare the changes in indoor temperature and humidity with and without a water space. With the water space, temperature was reduced by an average of $0.55^{\circ}C$ a day and moisture content increased by an average of 4%. As a result, it was possible to obtain quantitative data on water space's temperature reduction and humidity control capacities. This study is expected to provide basic information for further studies on the effect of water spaces in various buildings.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

A Study on the Characteristic Micro-Climate of Myeong-Kwan Kim House and the Moisture Content Behavior of Outside Exposed Columns (김명관고택의 미기후 특성과 외진노출기둥의 함수율 양상에 관한 연구)

  • Park, Yong-Shin;Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2020
  • Wood is one of the main materials of wooden building. Hanok also uses wood as its main component. Recently, Hanok continues to be built. Wood is affected by the climatic environment. The growth of decay bacteria is activated at more than 80% relative humidity. The microclimate environment and moisture content were measured for architectural cultural properties that have been maintained for a long time as a wooden building. The method analyzed the measured data by distinguishing between cloudy and sunny days. In the case of the old house, Anchae moisture content was higher than that of Sarangchae. This seems to be due to the narrow front yard or the planting of trees. The microclimate environment inside the house began to decrease in humidity from 8 am. According to the survey data, the relative humidity was less than 80% from 9 am when there was wind around 4-6 am. It appeared an hour earlier than in the absence of wind. As a result, the time interval for dehumidifying of wood was widened. Therefore, the wooden building is open to the front so there is airflow under the eaves during the daytime and wind in the morning appear to be alternatives in order to lower the moisture content.

A study on the Characteristics of Urban Dryness in Daegu (대구의 도시건조화 특성에 관한 연구)

  • Park, Myung-Hee;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.171-178
    • /
    • 2007
  • It is well known that urban relative humidity has continuous decreasing trend owing to the influence of urbanization. The change of relative humidity is directly influenced by two factors, namely, temperature effect and water vapor effect in various urban effects. In this study, the temperature and tile water vapor effects on the relative humidity change were analyzed by using monthly mean relative humidities for a long period($1961{\sim}2005$) in Daegu and Chupungnung. The major results obtained in this study can be summarized as follows. Firstly, the urban dryness was caused mainly by water vapor effect in summer. But, for the other seasons, the urban dryness is mainly due to the temperature effect. Secondly, the relative humidity in Daegu is on the decrease until now. This phenomenon is similar to another Korean huge cities such as Seoul, Daejeon and Incheon. But, it is different compared with Japanese huge cities such as Tokyo, Osaka and Nagoya, indicating a standstill in relative humidity change after 1980s.

A Study of the Characteristic of Friction Coefficient Variation for the External Environment (외부환경에 따른 마찰재의 마찰계수 변화 특성에 대한 연구)

  • Lee, Girhyoung;Lee, Dongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.601-607
    • /
    • 2015
  • The friction material for automobile is manufactured by mixing several composites to stop the running vehicles. Friction characteristics are changed significantly according to the relative amount of the base materials. However, difference of friction coefficient is sometimes measured at the test for the same friction material. Nevertheless, the study for solving these problems is insufficient. In this paper, the friction tests were carried out by changing the external environment and processing condition when the main ingredients are fixed and also evaluated how the friction coefficient changes. The variables are cooling air speed, humidity (Relative humidity and Absolute humidity), scorching time, soaking time and pad area. And it is analytically considered which environmental factor mainly affects the characteristic of friction coefficient variation by experiment. It is expected that the results from this study can be very useful as a database for development of the friction material.

Effect of relative humidity in swine house on pathogenesis of swine pleuropneumonia (돈사의 상대습도가 돼지흉막폐렴의 병인에 미치는 영향)

  • Jeong, Hyun-kyu;Han, Jeong-hee;Kim, Jae-hoon
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.131-142
    • /
    • 1996
  • The effect of relative humidity in swine house on swin pleuropneumonia was examined in piglets experimentally infected with Actinobacillus pleuropneumoniae serotype 5. A total of 20 piglet were grown under 30~40%, 41~50%, 51~64% and 65~80% relative humidity chambers after intratracheal inoculation of A pleuropneumoniae. Characteristic fibrinous pleuropneumonia was observed in the pigs grown at the low relative humidity groups. The detailed results were as follows : 1. Growth performance and environment conditions were lower than high relative humidity groups. 2. Characteristic histopathological findings were fibrinous pleuritis and pneumonia accompanied congestion, hemorrhage, thrombosis and edematous change. 3. Antigenic distribution of inoculated bacterium was found mainly in alveolar macrophages or accumulated foci of macrophages adjacent to necrotic area. 4. Characteristic electron microscopic findings were proliferation of type II pneumocyte with increased lamella bodies and activated alveolar macrophages with pseudopods and widening of interstitium.

  • PDF

Analysis on the Effect of Greenhouse Humidity Control by Counter-flow Ventilator in Winter (동절기 대향류형 환기장치의 온실 내 습도 조절 효과 분석)

  • Lee, Taeseok;Kang, Geumchoon;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.259-264
    • /
    • 2020
  • In this study, the humidity control effect of a counter-flow ventilator was analyzed in a greenhouse with high relative humidity at night in the winter season. A case of the counter-flow ventilator was 0.96 × 0.65× 0.82(W × D × H, m) and there were heat transfer element and two fans for air supply and exhaust in the counter-flow ventilator. Two counter-flow ventilators were used in this study and the setting humidity of the ventilators was 80%. The temperature and relative humidity at night(18:00-8:00) in the greenhouse were measured. In a greenhouse without a counter-flow ventilator, the average temperature and humidity was 14.9℃, 82.8%, respectively. When the counter-flow ventilator was operated, the corresponding averages were 15.1℃, 79.9%. The independent sample t test of monthly temperature and relative humidity showed no difference in temperature, and a significant difference in relative humidity with 1% of the significance level. Therefore, using the counter-flow ventilator helps to control relative humidity in greenhouse and increase yield.. And further research considering the pros and cons of using the counter-flow ventilator is needed.

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

Electrical characteristics of carbon nitride capacitor for micro-humidity sensors (마이크로 습도센서를 위한 질화탄소막 캐패시터의 전기적 특성)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2007
  • Crystallized carbon nitride film that has many stable physical and/or chemical properties has been expected potentially by a new electrical material. However, one of the most significant problems degrading the quality of carbon nitride films is an existence of N-H and C-H bonds from the deposition environment. The possibility of these reactions with hydroxyl group in carbon nitride films, caused by a hydrogen attack, was suggested and proved in our previous reports that this undesired effect could be applied for fabricating micro-humidity sensors. In this study, MIS capacitor and MIM capacitor with $5{\mu}m{\times}5{\mu}m$ meshes were fabricated. As an insulator, carbon nitride film was deposited on a $Si_{3}N_{4}/SiO_{2}/Si$ substrate using reactive magnetron sputtering system, and its dielectric constant, C-V characteristics and humidity sensing properties were investigated. The fabricated humidity sensors showed a linearity in the humidity range of 0 %RH to 80 %RH. These results reveal that MIS and MIM $CN_{X}$ capacitive humidity sensors can be used for Si based micro-humidity sensors.

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF