• Title/Summary/Keyword: Environment friendly finishing

Search Result 56, Processing Time 0.188 seconds

A study on the functional and environmentally friendly concrete (친환경 기능성 콘크리트에 관한 연구 방안)

  • Baek, Jong-Myeong;Seo, Moon-Seog;Lee, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.565-573
    • /
    • 2009
  • Even in case of new materials, materials that are not only harmless for the current global environment but also have high-performance and high-function are sought-after in consideration of the global environmental problems. Moreover, in construction areas where a large amount of cement and concrete are used, the establishment of the recycling technology or transformation into resources and energy materials are being put in place. And also, in a situation where the slow and relaxed city and rural life have a high priority, the need for cement and concrete as environmentally friendly new materials that best suit the emotions in human beings is on the rise and a new way to make good use of cement and concrete as new materials in construction technology should be sought. The recently introduced functional and environmentally friendly concrete is aimed at enhancing health through the adjustments of the body biorhythm using far-infrared. Minerals that contain a great amount of the elements with the frequent occurrence of the infrared among earth minerals and concrete are mixed to use structures or finishing materials, which will tackle the issues of smells, mold and corrosion.

  • PDF

The Effect of the Enzyme Treatment and the Plasma Pre- Treatment on Environment Friendly Fabrics (친환경 소재에 대한 플라즈마 가공과 효소가공이 감량률에 미치는 영향)

  • Kim, Ji-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • The cotton, wool, cotton/wool blended(80:20) and tencel fabrics were treated with low temperature oxygen or argon plasma, enzymes(cellulase or protease), or oxygen plasma-enzyme and examined for their weight loss and conditions for treatment for the environment friendly finishing. In the plasma treatment argon gas had better effect on the weight loss than oxygen gas did and the weight loss of all the fabrics was increased as increasing discharge power and discharge time. The weight loss of cotton, wool, cotton/wool blended(80:20) fabrics decreased in a large measure after 1 hr but that of tencel didn't decrease after 1 hr. In case of cellulose fibers oxygen gas plasma induced chemical functional groups on the surface of substrate more than argon gas plasma did so the weight loss of wool was larger than that of cotton, tencel fabrics in oxygen plasma-enzyme treatment. The weight loss of cotton and tencel fabrics decreased the initial stage because oxygen plasma pre-treatment caused cross linking as well as etching effect but argon plasma pre-treatment didn't. The plasma pre-treatment cleared the way for enzyme treatment on the whole but oxygen plasma pre-treatment bear in hand the increase of weight loss more or less because of the cross linking on the surface of cellulose fibers. The appropriate conditions for plasma treatment was 10-1Torr, 40W for 30minutes and for cellulase treatment were enzyme concentration of $3g/{\ell}$, pH 5, $60^{\circ}C$ for 1hr and for protease treatment were enzyme concentration of $4g/{\ell}$ pH 8, $60^{\circ}C$ for 1hr.

  • PDF

A Case Study on the Planning Characteristic and It's Application of Container Architecture in Europe (유럽 컨테이너 건축물의 사례분석을 통한 국내 적용방안)

  • Kim, Mi-Kyoung;Mun, Young-A;Han, Su-Ji
    • Journal of the Korean housing association
    • /
    • v.26 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • The purpose of this study was to analyze the planning characteristics and it's application of container architecture as case study. Field survey was used to analyze the spatial planning characteristics in terms of development outline, appearance, exterior, floor plan and interior of eight famous cases in Berlin, Hamburg, Hannover, Amsterdam and Paris of Europe. The results of this study were as follows; Firstly, good examples of container architectures such as student housing, social service center, temporary medical facility and cruise terminal in Europe suggested the potential of domestic applicability in various purposes and development. Secondly, various types of freight container, building container and module frame system should be developed with their reprocessing environment. Thirdly, it is necessary for us to develop ISO type(20~40ft) container and standard plan with interior and storage design reflecting demands of residents. Finally, the use of container module will be an environmental-friendly alternative for its modularity and reusability, so it should be used as it is without severe deformation. The development of environmental friendly energy sources such as hydro and solar power is necessary for domestic container architecture as well. The container design should include the use of high quality of exterior finishing materials and the plan of aesthetical color planning to make the building a local landmark.

Development of Retort Packaging Material Using Cellulose Nano Fiber (셀룰로오스 나노 파이버를 적용한 레토르트 포장재 개발)

  • Lee, Jinhee;Choi, Jeongrak;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • As modern society develops, it becomes very complex and diverse, and interests in the convenience of life and the natural environment are gradually increasing. Products used in our daily life are also changing according to the needs of consumers, and food packaging is one of them. In particular, retort packaging materials have been used for the purpose of long-term preservation of contents, but the appearance of products suitable for recent environmental issues has been somewhat delayed. Therefore, in order to develop eco-friendly and human-friendly products by replacing the metals used in the existing retort packaging materials, the possibility of substitution was examined using cellulose nanofibers, a natural material. As a result, it can be seen that all functions can be replaced according to the existing long-term storage characteristics for retort packaging films. In particular, not only oxygen permeability and water vapor permeability, which are one of the most important factors, but also heat resistance, which is heating durability, is evaluated as applicable to commercialization compared to products using metals currently in use.

A Study on the Residents' Awareness on the Occurrence of Allergic Diseases in Residential Buildings (주거내 알레르기성 질환 발생현황 및 거주자 의식 조사연구)

  • Kim, Sung-Hwa;Jang, Mun-Young;Lee, Jae-Hoon
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.2
    • /
    • pp.140-148
    • /
    • 2013
  • The purpose of this study is to examine the current status of allergic diseases associated with the housing environment and the psychological attitude of residents towards relevant risk factors. This study surveyed 1,200 people. In the first round, 200 participants were questioned through direct survey methods, while 1,000 participants filled out an online survey in the second round. Selected study subjects consisted of allergic diseases known to be closely related to housing environment factors. With advice from medical experts, the analysis included the examination of the prevalence status regarding five types of allergy-related diseases-allergic conjunctivitis, allergic rhinitis, allergic dermatitis, asthma and headache-with the range of disease incidence set within the past ten years. The survey was conducted on all age groups except those nine years old and younger, and the findings are as follows. Allergic diseases were found to be more prevalent among women than men. Residents identified effective methods for the alleviation and treatment of allergic diseases as ventilation, use of environmentally-friendly finishing materials, maintenance of a clean living space through cleaning or washing, and sunlight exposure. Residents' understanding of allergic diseases varied depending on their experience with such diseases and residential characteristics.

A Study on Quantity of CO2 Emission about Remodeling Cycle at High-rise Apartment housing (초고층 공동주택 세대내 개보수 주기에 따른 이산화탄소 배출량 연구)

  • Kim, Dayoo;Kang, Seungyi;Je, Haeseong
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.75-80
    • /
    • 2010
  • The goal of this study is to figure out the remodeling cycle at high-rise apartment housing and to analysis on quantity of $CO_2$ emission about remodeling cycle. The process of research is as follow; 1) Estimate the remodeling cycle through survey targeting residents at high-rise apartment building. 2) Simulate conditions on the high-rise apartment housing. 3) Calculate quantity of energy consumption and $CO_2$ emission 4) Derive elements that are on high level of environmental load evaluation. The main results of this study is as follow; 1) The cycle of finishing such as wallpaper is shorter than the cycle of building equipment such as elements in a toilet. 2) According to result of calculating $CO_2$ emission, fabric wallpaper and mortar are main factors that impact on the environment. The results is important to show reference points on quantitative measuring evaluation for the environmental-friendly extent.

Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials (건물외피용 태양광발전 BIPV 모듈 개발 연구)

  • Yoon, Jongho;Kim, J.I;Lee, K.S.;Yu, G.J.
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

Preliminary Tests of Mortars Containing Magnetite as Fine Aggregate (자철석 혼입 모르터의 기초물성 연구)

  • Yoon, Sang Chun;Yang, Sung Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.82-88
    • /
    • 2013
  • In this project a preliminary experimental research work was done to apply mortars containing magnetite as fine aggregates unto floor finishing materials in order to make indoor environment eco-friendly and to have noiseproof control between floors. Crushed magnetites were substituted as sands in the mix design with a range of 0, 20, 40, 60, 100%. First far-infrared radiation tests to determine emissivity and emission power were done in accordance with the KICM test standard and an outstanding result was obtained. Density and compressive strength test results also showed that as the substitution increases, test values increase in a linear trend. However dry shrinkage test results revealed that as the substitution increases, shrinkage strain also increases. To clearly seek a solution about this problem, more experimental works should be done on oncoming experimental program.

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead;Uddin, Nizam;Acter, Thamina;Uddin, Md. Minhaz;Chowdhury, A.M. Sarwaruddin;Bari, Md. Latiful;Mustafa, Ahmad Ismail;Shamsuddin, Sayed Md.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.233-250
    • /
    • 2020
  • In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.

How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

  • Chang, Hye-Ja;Kim, Jeong-Won;Ju, Se-Young;Go, Eun-Sun
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.366-374
    • /
    • 2012
  • In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices.