• Title/Summary/Keyword: Entrance Length

Search Result 204, Processing Time 0.021 seconds

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

Determination on Connection Type of Entrance/Exit on Urban Roads (도시부 도로상의 진출입부 접속형태 결정에 관한 연구)

  • Lee, Hyung-Mu;Kwon, Sung-Dae;Oh, Seok-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.219-230
    • /
    • 2023
  • Cities are continued to be highly advanced and metropolitanized. Lands adjacent to road make entry/exit connection increase along with construction of facilities for various purposes. However, in the absence of specific installation standards of entry and exit connection, inappropriate access location, types of access, and operation methods are deteriorating the level of traffic services at existing roads and intersections. Therefore, in order to minimize the traffic impact from entrances connected to minor arterial roads and colletor roads, first, this study re-established the waiting length in the intersection of upstream and downstream and length required for changing lanes and between entrance/exit and connection, considering the road and traffic environment in contact with the entrance. Second, it is suggested that the operation method depending on the connection type and whether to install left turn lane and acceleration and deceleration lane can be determined quantitatively by relation with the service level of nearby intersection after calculating the threshold amount of business site through negative social cost, which is the difference between the installation cost of the left turn lane and the acceleration and deceleration lane according to the type of access to the entrance and exit.

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Measurement and Within-tree Distribution of Larval Entrance and Adult Emergence Holes of Japanese Pine Sawyer, Monochamus alternatus(Coleoptera: Cerambycidae) (솔수염하늘소의 유충침입공과 성충탈출공의 측정과 소나무 내 분포)

  • 정영진;이상명;김동수;최광식;이상길;박정규
    • Korean journal of applied entomology
    • /
    • v.42 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • Larval entrance and adult emergence holes of Japanese pine sawyer (Monochamus alternatus), primary vector of pinewood nematode (Bursaphelenchus xylophilus), were measured in dead pine logs from 1999 to 2002. Their distributions within pine log were also analyzed. More numbers of entrance and emergence holes were distributed on crown than trunk part as 56.2 and 27.7 holes/m$^2$, respectively Higher proportions of entrance (27.5%) and emergence holes (22.4%) were distributed on the log with 8 to 10 cm diameter; the larger or the smaller logs had fewer holes. Surface area of entrance hole was 65.8 $\textrm{mm}^2$ and diameter of emergence holes was 7.0 mm in average. Average depth of pupal chamber was 24.8 mm from surface to the bottom of the chamber, and its volume ranged from 200 to 2.000 ㎣ Average distance between entrance and emergence holes on bark surface was 3.3 cm. Gallery length from the beginning of entrance hole to the end of emergence hole was 46.2 mm.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

Experimental Study on the Slit Cover Hood for Reducing the Micro Pressure Waves in High-speed Train-tunnel Interfaces (고속철도에서 슬릿커버후드의 터널 미기압파 저감성능에 관한 연구(II))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.3-11
    • /
    • 2000
  • Purpose of this paper is to investigate the hood configuration at a tunnel entrance to reduce the micro pressure wave that is generated according to train speed. Two configurations were examined for the tunnel of 0.5 km in length. The experimental results show that a slit cover hood installed at the entrance of the tunnel reduces the maximum micro pressure wave by 41.2%, and the configuration with a slit cover hood installed at the entrance and the $45^{\circ}$ slanted portal at the exit of the tunnel suppress the pressure wave by 47.7%.

  • PDF

The Predictors of Employees' Personnel Rating at a University Hospital in Korea (일개 대학병원 직원의 인사고과성적 예측요인)

  • Kwon, Soon-Chang;Seo, Young-Joon
    • Korea Journal of Hospital Management
    • /
    • v.10 no.3
    • /
    • pp.1-24
    • /
    • 2005
  • This study purports to investigate the determinants of individual personnel rating of the employees at a university hospital in Seoul, Korea. The sample used in this study consisted of 63 nurses, 41 para-medical staff (Clinical Pathologist, and Radiologist), and 67 administrative staff. Independent variables of the study included the achievement level of the selection test (English, major subject, and interview), post-entrance development factors (education and training, career development, supervisory support, co-worker support, and organizational support), and demographic characteristics. Data for the achievement level of the entrance exam and years for the first promotion were collected from the administrative records of the study hospital, while data for the post-entrance development factors were collected from the survey with self-administered questionnaires using 5-point Likert Scale during June 10-25, 2003. Collected data were analyzed using hierarchical multiple regression. The results of the study showed that achievement level of the interview and English exam at the selection test, education and training, organizational support, and supervisory support while working at the hospital, and length of duration (below 8 years) and educational background (4-year college graduates) among demographic variables had significant positive effects on the personnel rating. The results of the study imply that hospital administrators should make an effort to improve the validity of the selection test, and to motivate the employees to receive more education and training.

  • PDF

Optimizing the Manifold Design of a Fuel Cell Stack for Uniform Distribution of Reactant Gases within Fuel Cell Channels (연료전지 채널 내 균일한 유량분배를 위한 연료전지 스택의 매니폴드 디자인 최적화 연구)

  • Jo, A-Rae;Kang, Kyung-Mun;Oh, Sung-Jin;Ju, Hyun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.11-19
    • /
    • 2012
  • The main function of fuel cell manifold is to render reactants distribution as uniform as possible into a fuel cell stack. The purpose of this study is to numerically investigate the effects of stack manifold design on reactants distribution within a fuel cell stack. Four manifold designs with different manifold entrance shapes (expansion or diffuser) and different values of the extra width between the cell outer channel and manifold side wall are considered and applied to the fuel cell stack consisting of 50 cells. Since the fuel cell stack geometry involves several millions of grid points for numerical calculations, a parallel computing methodology is employed to substantially reduce the computational time and overcome the memory requirement. The numerical simulations are carried out and calculated results clearly demonstrate that both the manifold entrance shape and extra width have a substantial influence on manifold performance, controlling the degree of flow separation and entrance length for fully developed flow in the manifold channel. Finally, we suggest the optimum design of fuel cell manifold based on the simulation results.

NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES (원형관내 나노유체의 강제대류에 관한 수치적 연구)

  • Choi, Hoon Ki;Yoo, Geun Jong
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.