• Title/Summary/Keyword: Entrance Length

Search Result 204, Processing Time 0.02 seconds

Guideline of Acceleration Length by Level of Service for Two Lane Entrance Ramp (2차선 유입연결로의 서비스 수준별 가속차선 길이 산정 기준)

  • 문대승;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.75-90
    • /
    • 1996
  • The objective of study is to examine relationship between traffic flow characteristics of two lane entrance terminal and acceleration length, and to suggest the acceleration length by level of service. The relationship between the speed ratio and the distance from the ramp appeared to be a quadratic concave from. In the case of two lane entrance ramp, the acceleration length is suggested as 1.4~2.0 times longer than the acceleration length of one lane entrance ramp. It is also recommended that acceleration length for two lane entrance ramp should be designed according to the level of service at the right most lane (level of service A : 1.4 B : 1.6 C : 1.8 D : 2.0 times of the one lane entrance ramp acceleration length) on freeway.

  • PDF

A Theoretical and Experimental Study on the Developing Turbulent Unsteady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류 비정상유동에 대한 이론과 실험적 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.643-651
    • /
    • 1998
  • Turbulent unsteady flows in the entrance region of a square duct are investigated with a hot-wire anemometer system. The velocity waveforms the mean and turbulence components of the axial velocity and the entrance length are obtained as a major characteristics of the developing turbulent unsteady flows. An inviscid flow theory is presented to describe the developing axial mean velocity profiles. A good agreement is seen between the measured and theoretically predicted values. The propagation of turbulence generated near the entrance of the square duct is satisfactorily approximated by an empirical correlation of the propagation of turbulence proposed so far. The local turbulence intensi-ty is found to be a little smaller in the accelerating phase than in the decelerating phase. The entrance length is about 60 times as large the hydraulic diameter.

  • PDF

A Study on the Comparison Between Experimental and Numerical Analysis for Developing Turbulent Steady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류정상유동의 실험해와 수치해의 비교에 관한 연구)

  • 고영하;박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.236-245
    • /
    • 1997
  • The flow characteristics of developing turbulent steady flow are investigated numerically and experimentally in the entrance region of a square duct ($40 mm{\times}40 mm$ and 4, 000 mm). The numerical anaysis are incorporated by finite- volume discretization with staggered grid system and SIMPLE algorithm. The numerical solution are compared with experimental results of mean velocity profiles, turbulence intensity and entrance length. For turbulent steady flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Thrbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct for the developing turbulent steady flows. The entrance length of the turbulent steady flow is about 40 times as large as the hydraulic diameter under the present experimental condition.

  • PDF

A study on velocity profiles and inlet length of developing transitional pulsating flows in the entrance region of a square duct (정4각 덕트 입구영역에서 천이파동유동의 속도분포와 입구길이에 관한 연구)

  • 유영태;모양유;홍성삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.92-104
    • /
    • 1993
  • In the present study, the velocity profiles and entrance length of developing transitional pulsating flows are investigated both analytically and experimentally in the entrance region of a square duct. The systems of conservation equations for transitional pulsating flows in a square duct are solved analytically by linearizing the non-linear convective terms. Analytical solutions are obtained in the form of infinite series for velocity pofiles. The experimental study for the air flow in a square duct(40mm*40mm*4000mm) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with a data acquisition and processing system. The distribution of velocity profiles( $u_{ps}$ / $u_{m,ta}$) in the decelerating period is higher than in the accelerating period. The distribution of the axial component of the axial component of velocity in the transitional flow is nearly uniform in the central region of the duct, and decrease rapidly near the wall. The entrance length correlation of the transitional pulsating flows in a square duct is obtained to be $L_{e}$/ $D_{h}$=0.83 $A_{1}$R $e_{ta}$ /(.omega. sup+1)$^{2}$TEX>

  • PDF

Design Guideline for Successive Entrance Ramp Spacing (고속도로 연속 유입연결로 접속단간의 이격거리 설계기준에 관한 연구)

  • 장재남;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.155-172
    • /
    • 1996
  • This study is to analyze speed variation at merging section of successive entrance ramp and to suggest design criterion of ramp spacing at successive entrance ramp in urban area. The major findings are as follows ; (1) The relationship between the speed at merging section of successive entrance ramp and the distance from the merging point represents concave curve. (2) The 85 percentile speed(S) at outside lane (lane 1) is modeled S = 49.5 + 355.7(D/Q) - 0.94(D2/Q) + 6.78(D/AL2) where, D = Distance from merging point(m), Q = Lane 1 volume(vph) AL2 = Acceleration length at second entrance ramp(m) (3) The more traffic volume and the shorter acceleration length of the second entrance ramp, longer ramp terminal spacing is needed.

  • PDF

A Study on Velocity Profiles and Critical Dean Number of Developing Transitional Unsteady Flows in a Curved Duct (곡관덕트의 입구영역에서 천이비정상유동의 속도분포와 임계딘수에 관한연구)

  • 이행남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.862-870
    • /
    • 1998
  • In this paper an experimental investigation of characteristics of developing transitional unsteady flows in a square-sectional 180。 curved duct are presented. The experimental study using air is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Do ppler Velocimeter(LDV) system. The flow development is found to depend upon Dean number dimensionless angular frequency velocity amplitude ration and cur-vature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows are strong and complicate at entrance region. The entrance length of transitional pulsating flow is obtained to 120。 of bended angle of duct in this experimental conditions.

  • PDF

A Study on the Flow Characteristics of developing transitional Steady Flows in the Entrance Region of a Curved Duct (곡관덕트의 입구영역에서 천이정상유동의 유동특성에 관한 연구)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In this paper an experimenatal investigation of characteristics of developing ransitional steady flows in a square-sectional $180^{\circ}$ curved duct is presented, The experimental study is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Dopper Velocimeter(LDV) system. The flow development is found to depend upon Dean number and curvature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows becomes strong from $120^{\circ}$ of bended angle on the duct. The entrance length of transitional steady flow is obtained to $120^{\circ}$ of bended angle of the duct in this experimental conditions.

  • PDF

Lmainar flow and heat transfer of the fluid with low prandtl number in the entrance region of a circular pipe (낮은 프란틀수를 가지는 유체의 원관 입구 층류유동 및 열전달)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.284-292
    • /
    • 1981
  • The flow of fluid with low prandtl number in the entrance region of a circular pipe has been considered, where the wall temperature is maintained to be constant. A finite difference method is used for the integral form of the governing equations in order that they satisfy the conservative properties of the numerical solutions. It is confirmed that the hydrodynamic entrance length and be divided into growing boundary layer region and fully viscous region, which is compared with existing results obtained by using boundary layer approximations. By assuning the developing velocity profile in the entrance region, the thermal entrance length is estimated and the local Nusselt number is obtained at various locations along the axial dirction.

Velocity Profiles and Entrance Length of Transitional Oscillatory Flows in the Entrance Region of a Square Duct (정(正)4각(角)덕트 입구영역(入口領域)에서 천이(遷移) 진동유동(振動流動)의 입구(入口)길이와 속도분포(速度分布))

  • Choi, J.H.;Choi, B.M.;Yoo, Y.T.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.275-287
    • /
    • 1993
  • The flow characteristics of the transitional oscillatory flows are investigated analytically and experimentally in the entrance region of a square duct. The systems of conservation equations are analytically solved by linearizing the non-linear convective terms for the developing transitional oscillatory flows in a square duct. The analytical solutions are obtained in the form of infinite series for the velocity profiles. The experimental study for the air flow in a square duct is carried out to measure the velocity profiles and waveforms by using a hot-wire anemometer with the data acquisition and processing systems. The theoretical and experimental results provide the major characteristics of the developing transitional oscillatory flows, such as velocity profiles, velocity waveforms, and entrance length. The velocity profiles in the decelerating phase are larger than those in the accelerating phase for the developing transitional oscillatory flows. The correlations of the entrance length of the transitional oscillatory flows in a square duct are found to be $Le/Dh=K{\cdot}Re_{os}/2({\omega}^+)^2$, where K is 1.23 of an experimental constant.

  • PDF

An Experimental Study on Velocity Profiles and Turbulence Intensity of Developing Turbulent Pulsating Flows in the Entrance Region of a Square Duct

  • Park, G.M.;Koh, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.235-242
    • /
    • 1993
  • The flow characteristics of developing turbulent pulsating flows are investigated experimentally in the entrance region of a square duct ($40mm{\times}40mm$ and 4,000mm). Mean velocity profiles, turbulence intensity and entrance length are measured by using a hot-wire anemometer system together with data acquisition and processing systems. It is found that the velocity waveforms are not changed in the fully developed flow region where that $x/Dh{\geq}40$. For turbulent pulsating flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Mean velocity profiles of the turbulent steady flows follow the one-seventh power law profile in the fully developed flow region. Turbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct, and is slightly smaller in the accelerating phase than in the decelerating phase for the turbulent pulsating flows. The entrance length of the turbulent pulsating flow is about 40 times as large as the hydraulic diameter under the present experimental conditions.

  • PDF