• Title/Summary/Keyword: Entrainment effect

Search Result 106, Processing Time 0.032 seconds

Effect of Induced Voltage on Spray Characteristics of Piezo Actuated Diesel Injector (인가전압이 디젤 피에조 인젝터의 분무 특성에 미치는 영향)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • A piezo-driven injector was applied with a purpose to evaluate the effect of induced voltage on spray characteristics. For this, injection rate, macroscopic imaging, ambient gas entrainment and particle sizing were carried out. It was shown that initial slope of injection rate was steeper as induced voltage increased, while slope of injection rate became mostly constant with fully opened needle. From macroscopoic imaging, longer spray tip penetration was produced with higher induced voltage. Moreover, wider spray angle was detected in the early stage of spray development, when higher induced voltage was applied. Ambient air entrainment rate was increased and particle size was reduced with higher induced voltage.

Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor (코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used a coanda nozzle for the exhaust gas recirculation in a MILD combustor. A numerical analysis was accomplished to elucidate the effect of exhaust gas entrainment toward the furnace with or without a coaxial contractor. The result of the present CFD analysis showed that the entrainment mass flow rate without a coaxial contractor had 18% larger than that with a coaxial contractor when the mixed gas outlet pressure was ambient pressure. On the other hand, if the outlet pressure increased, the mass flow rate with a contractor was larger than that without a contractor. It could be analysed by the entrainment driving force composed with the nozzle throat pressure, inlet and outlet pressures and flow cross sectional area.

Modeling of Liquid Entrainment and Vapor Pull-Through in Header-Feeder Pipes of CANDU

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • The liquid entrainment and vapor pull-through offtake model of RELAP5/MOD3 had been developed for SBLOCA (Small Break Loss of Coolant Accident). The RELAP5/MOD3 model for horizontal volumes accounts for the phase separation phenomena and computes the flux of mass and energy through a branch when stratified conditions occur in the horizontal pipe. In the case of CANDU reactor, this model should be used in the coolant flow of 95 feeders connected to the reactor header component under the horizontal stratification in header. The current RELAP5 model can treat the only 3 directions junctions; vertical upward, downward, and side oriented junctions, and thus improvements for the liquid entrainment and vapor pull-through model were needed for considering the exact angles. The RELAP5 off-take model was modified and generalized by considering the geometric effect of branching angles. Based on the previous experimental results, the critical height correlation was reconstructed by use of the branch line connection angle and validation analyses were also performed using SET. The new model can be applied to vertical upward, downward and angled branch, and the accuracy of the new correlations is more improved than that of RELAP5.

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

A study on the free surface vortex in the pipe system (배관내 자유수면에서 와류현상에 대한 연구)

  • 오율권;장완호;이종원;김상녕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2126-2135
    • /
    • 1992
  • In order to prevent the decay heat removal system from failure due to air entrainment or free surface vortex in the piping system, a set of simulating experiments for the midloop operation of nuclear power plant was performed. Through these experiments, a relation between the dimensionless numbers, such as submergence H/d, froude number, reynolds number, was found. However, the effect of reynolds number was negligible for the operation conditions of Nuclear power plant. It was also found that the perturbation of the system by the disturbance such as pump start, valve operation, etc., has a strong effect on the free surface vortex. Furthermore, from a view point of reactor safery, a modified inlet device of reducer type is strongly recommendable for the prevention of air entrainment.

Flow behaviors of square jets surface discharged and submerged discharged into shallow water (천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동)

  • Kim, Dae-Geun;Kim, Dong-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

An Experimental Study on Ventilated Supercavitation of the Disk Cavitator (원판 캐비테이터의 환기 초공동에 대한 실험적 연구)

  • Kim, Byeung-Jin;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.236-247
    • /
    • 2015
  • In this paper, the experimental equipments for ventilated supercavitation in cavitation tunnel is constructed and the basic data of ventilated supercavitation regard to the entrainment coefficient and Froude number is fulfilled. The experiments are conducted for the disk cavitator with injecting air and the pressure inside cavity and the shape of cavity are measured. As the entrainment coefficient increases while the Froude number is kept constant, the ventilated cavitation number decreases to a minimum value which decreases no more even with increasing the air entrainment. The minimum value of ventilated cavitation number, caused by the blockage effect, decreases according to increasing the diameter ratio of test section to cavitator. The cavity length is rapidly enlarged near the minimum cavitation number. In low Froude numbers, the cavity tail is floating up due to buoyancy and the air inside the cavity is evacuated from its rear end with twin-vortex hollow tubes. However, in high Froude numbers, the buoyancy effect is almost negligible and there is no more twin-vortex tubes so that the cavity shape becomes close to axisymmetric. In order to measure the cavity length and width, the two methods, which are to be based on the cavity shapes and the maximum width of cavity, are applied. As the entrainment coefficient increases after the ventilated cavitation number gets down to the minimum cavitation number, the cavity length still increases gradually. These phenomenon can be confirmed by the measurement using the method based on the cavity shapes. On the other hand, when the method based on the maximum width of cavity is used, the length and width of the cavity agree well with a semi-empirical formular of natural cavity. So the method based on the maximum width of cavity can be a valid method for cavitator design.

Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon (연행작용을 고려한 우면산 토석류 모의 매개변수 특성분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Lim, Hyuntaek
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.637-646
    • /
    • 2020
  • The shallow landslide-trigerred debris flow in hillslope catchments is the primary geological phenomenon that drives landscape changes and therefore imposes risks as a natural hazard. In particular, debris flows occurring in urban areas can result to substantial damages to properties and human injuries during the flow and sediment transport process. To alleviate the damages as a result of these debris flow, analytical models for flow and damage prediction are of significant importance. However, the analysis of debris flow model parameters is not yet sufficient, and the analysis of the entrainment, which has a significant influence on the flow process and the damage extent, is still incomplete. In this study, the effects of erosion and erosion process on the flow and the impact area due to the change in the soil parameters are analyzed using Deb2D model, a flow analysis model of debris developed in Korea. The research is conducted for the case of the Mt. Umyeon landslide in 2011. The resulting impacted area, total debris-flow volume, maximum velocity and inundated depth from the Erosion model are compared to the field survey data. Also, the effect of the entrainment changing parameters is analyzed through the erosion shape and depth. The debris flow simulation for the Raemian and Shindong apartment catchment with the consideration of entrainment effect and erosion has been successful. Each parameter sensitivity could be analyzed through sensitivity analysis for the two basins based on the change in parameters, which indicates the necessity of parameter estimation.

Design and Application of Thermal Vapor Compressor for Multi-Effect Desalination Plant (열증기압축기 설계와 MED 담수설비에의 적용)

  • Park, Il-Seok;Park, Sang-Min;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1670-1675
    • /
    • 2004
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape. mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element, In this paper, the experimental results for Various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in comparing with CFD results. The two results show a good agreement with each other within 3.5 % accuracy with regard to the entrainment ratio.

  • PDF