• Title/Summary/Keyword: Enthalpy-leak ratio

Search Result 2, Processing Time 0.018 seconds

A Proposal for New Definition of Performance Indices of a Desiccant Rotor (제습로터 성능지료 제안)

  • Lee, Dea-Young;Lee, Gil-Bong;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.537-544
    • /
    • 2007
  • To facilitate comparative analysis on the effects of numerous parameters concerning design and operation of a desiccant rotor, it is firstly required to represent the dehumidification performance as numerical indices. In this work is proposed two performance indices of a desiccant rotor: the humidity effectiveness and the enthalpy-leak ratio. The humidity effectiveness represents the actual dehumidification as compared with the dehumidification in an ideal case, while the enthalpy-leak ratio represents the enthalpy transfer from the regeneration side to the dehumidification side. In an ideal case, the two indices approach one and zero, respectively. The effects of numerous parameters on the dehumidification performance of a desiccant rotor are investigated through numerical simulation and represented with the two indices. The results show that the performance indices are mainly determined by three nondimensional parameters each representing the thermal capacity, the sorption capacity, and the transfer capacity of a desiccant rotor.

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.