• Title/Summary/Keyword: Entertainment robot dog

Search Result 4, Processing Time 0.022 seconds

Factors Affecting the Intimacy Level Between Preschool Children and Entertainment Robot Dog - Focusing on the Principle of Distribution (엔터테인먼트 로봇 견에 대한 유아 친밀성 연구 - 분배원리를 중심으로)

  • Lee, Ha-Won;Lee, Mi-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.109-118
    • /
    • 2020
  • The purpose of this research is to investigate the effects of interaction, gender, and age on preschool children's intimate relationship with entertainment robot dog. For this purpose, two kinds of experiments were conducted for 70 preschool children in day care centers in Seoul. Experiment 1 relates to the interaction with entertainment robot dog, 34 children aged 5 years (17 experimental groups, 17 comparative groups). Experiment 2 was a study on the effects of gender and age. A total of 36 children (pre- and post-group) of 12 children aged 3, 4, and 5 years old were included. This study interviewed the number of distributions and the motivations for distribution by using the "Dividing Game(Distribution Principle)" interview. As a result, firstly the group experiencing the interaction felt more intimate with the entertainment robot dog, and the reason was emotional factor the most(Experiment 1). Second, gender had no significant effect on entertainment robot dog intimacy and age showed a reverted U-shape. The above results are meaningful in that it reveals what kind of factors affecting the intimacy between the preschooler and entertainment robot dog.

Design of an Autonomous Eating Pet Robot

  • Park, Ch.S.;Choi, B.J.;Park, S.H.;Lee, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.855-858
    • /
    • 2003
  • The trends of recent developed a pet robot which interacts with people are increased gradually. There are a few pet robots that are a robot dog, robot cat, and robot fish. The pet robot is featured that it is possible to sympathize and give pleasure to human. The pet robots express delight, sorrow, surprise, and hunger through the artificial intelligence. Previously, the pet robot has to exchange the battery when it is exhausted. Commercialized robots have a self-recharging function, which express hunger. Robot dog AIBO, SONY in Japan, checks the battery for expressing hunger. They find an energy station for recharge. While operation time of AIBO is 1 hour 30 minutes, recharging time is 2 hours. Recharging time is longer than operation time. During the recharge, they don't operate. We obtain a motivation for eating the battery when find the problem. In this paper, introduce an Autonomous Eating Pet Robot and propose a design for realization. The Autonomous Eating Pet Robot has a function that is the most basic instinct that is finding a food and evacuating.

  • PDF

Development of The Moving Target Tracking Robot in Outdoor Environment (실외환경에서의 이동 목표 추종용 로봇의 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.

Development of an RF-Ultrasonic Sensor System to Detect Goal and Obstacle for the CARTRI Robot (CARTRI 로봇의 목표물 검출과 장애물 검출을 위한 RE-초음파 센서 시스템 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1009-1018
    • /
    • 2003
  • In a park or street, we can see many people Jogging or walking with their dogs chasing their masters. In the previous study, an entertainment robot, CARTRI that imitates the dog's behavior was created. The robot's task was chasing a moving goal that was recognized as the master. The physical structure of the CARTRI robot was three-wheel type locomotion system. The sensor system which could detect the position of the master in the outdoor space, was consists of a signal transmitter which was held by the master and five ultrasonic receivers which were mounted on the robot. In the experiment, the robot could chase a human walking in outdoor space like a park. But it could not avoid obstacles and its behavior was only goal-chasing behavior because of the limit of the sensor system. In this study, an improved RF-ultrasonic sensor system which can detect both goal and obstacle is developed in order to enable the CARTRI robot to carry out various behavior. The sensor system has increased angle resolution by using eight ultrasonic receivers instead of five in the previous study. And it can detect obstacle by using reflective type ultrasonic sensors. The sensor system is designed so that detection of goal and obstacle could be conducted in one sampling period. The Performance of the developed sensor system is evaluated through experiments.