• Title/Summary/Keyword: Enterobacter asburiae ObRS-5

Search Result 2, Processing Time 0.02 seconds

Induction of systemic resistance against Phytophthora blight by Enterobacter asburiae ObRS-5 with enhancing defense-related genes expression (역병에 대한 Enterobacter asburiae ObRS-5 처리의 유도저항성 발현)

  • Kim, Dayeon;Jeon, Yong Hee;Ahn, Jea-Hyung;Ahn, Si Hyeon;Yoon, Young Gun;Park, In Cheol;Park, Jin Woo
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.724-732
    • /
    • 2020
  • Phytophthora capsici is the organism that causes Phytophthora blight which infects red pepper plants prolifically, ultimately leading to crop loss. A previous study revealed that Enterobacter asburiae ObRS-5 suppresses Phytophthora blight in both red pepper and Ligularia fischeri plants. In order to determine whether the induced systemic resistance (ISR) was triggered by pre-infection with the ObRS-5 strain, we conducted quantitative PCR using primers for PR1, PR4, and PR10, which correlate with systemic resistance in red-pepper plants. In our results, red pepper plants treated with the ObRS-5 strain demonstrated increased expression of all three systemic resistance genes when compared to controls in the glasshouse seedling assay. In addition, treatment of red peppers with the ObRS-5 strain led to reduced Phytophthora blight symptoms caused by P. capsici, whereas all control seedlings were severely affected. Perhaps most importantly, E. asburiae ObRS-5 was shown to induce the ISR response in red peppers without inhibiting growth. These results support that the defense mechanisms are triggered by ObRS-5 strain prior to infection by P. capsici and ObRS-5 strain-mediated ISR action are linked events for protection to Phytophthora blight.

Biological Control of Gom-chwi (Ligularia fischeri) Phytophthora Root Rot with Enterobacter asburiae ObRS-5 to Suppress Zoosporangia Formation and Zoospores Germination

  • Kim, Dayeon;Lee, Sang Yeob;Ahn, Seong Ho;Han, Ji Hee;Park, Jin Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.244-254
    • /
    • 2020
  • Gom-chwi (Ligularia fischeri) is severely infected with Phytophthora drechsleri, the causal organism of Phytophthora root rot, an economically important crop disease that needs management throughout the cultivation period. In the present study, Phytophthora root rot was controlled by using bacterial isolates from rhizosphere soils collected from various plants and screened for antagonistic activity against P. drechsleri. A total of 172 bacterial strains were isolated, of which, 49 strains showed antagonistic activities by dual culture assay. In the seedling assay, six out of the 49 strains showed a predominant effect on suppressing P. drechsleri. Among the six strains, the ObRS-5 strain showed remarkable against P. drechsleri when treated with seed dipping or soil drenching. The ObRS-5 strain was identified as Enterobacter asburiae based on 16S ribosomal RNA gene sequences analysis. The bacterial cells of E. asburiae ObRS-5 significantly suppressed sporangium formation and zoospore germination in P. drechsleri by 87.4% and 66.7%, respectively. In addition, culture filtrate of E. asburiae ObRS-5 also significantly inhibited sporangium formation and zoospore germination by 97.0% and 67.6%, respectively. Soil drenched bacterial cells, filtrate, and culture solution of E. asburiae ObRS-5 effectively suppressed Phytophthora root rot by 63.2%, 57.9%, and 81.1%, respectively. Thus, E. asburiae ObRS-5 could be used as a potential agent for the biological control of Phytophthora root rot infecting gom-chwi.