• Title/Summary/Keyword: Ensemble system

Search Result 366, Processing Time 0.021 seconds

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics (기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석)

  • Hyun, Yu-Kyung;Lee, Johan;Shin, Beomcheol;Choi, Yuna;Kim, Ji-Yeong;Lee, Sang-Min;Ji, Hee-Sook;Boo, Kyung-On;Lim, Somin;Kim, Hyeri;Ryu, Young;Park, Yeon-Hee;Park, Hyeong-Sik;Choo, Sung-Ho;Hyun, Seung-Hwon;Hwang, Seung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.