본 논문에서는 의약품 유통량 예측을 위해 기존의 통계 방식(ARIMA)과 머신러닝 방식(Informer)을 개발하고 비교하였다. 일별 데이터의 예측에서는 머신러닝 기반의 모델이 유리하며, 월별 예측에서는 ARIMA를 활용하고 데이터가 증가하면서 Informer로 전환하는 것이 효과적임을 발견하였다. 예측 에러율(RMSE)은 기존 방식 대비 26.6% 낮아졌으며, 예측 정확도도 13% 개선되어 86.2%의 결과를 보였다. 본 논문을 통해 통계적 방법과 머신러닝 방법을 앙상블하여 최상의 결과를 얻을 수 있다는 장점을 발견하였다. 또한 머신러닝 기반의 AI 모델은 불규칙한 상황에서도 딥러닝 연산을 통해 최선의 결과를 도출할 수 있으며, 상용화 이후에는 데이터양이 증가함에 따라 성능이 향상될 것으로 기대된다.
가뭄과 홍수의 예측, 기후변화가 유역 유출량, 더 나아가 수질 및 생태계에 미치는 영향의 정확한 분석을 위해서는 수문 모의 과정의 불확실성을 정량화하고 최소화하기 위한 노력이 필요하다. 수문자료동화는 수문모형의 상태량이나 매개변수를 갱신(update)하여 모의 초기 조건의 가장 가능성 있는 추정치를 생성하는 기법으로, 실시간 관측 정보를 이용하여 예측 정확도를 향상시킬 수 있는 방법이다. 본 연구에서는 airGRdatassim 모형을 이용하여 앙상블 기반 순차 자료동화 기법인 앙상블 칼만 필터와 파티클 필터로 용담댐 유역에 대해 일 유출을 모의하고, 자료동화 기법별 특성을 비교 및 분석하였다. 모의 결과, Kling-Gupta efficiency (KGE) 지표가 자료동화 적용 전 0.799에서 앙상블 칼만 필터와 파티클 필터 적용시 각각 0.826, 0.933으로 향상되었다. 또한 기상 강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 수 등 수문자료동화의 설정과 관련된 하이퍼-매개변수(hyper-parameter)의 불확실성이 모의 예측 성능에 미치는 영향을 분석하였다. 강수 및 잠재 증발산 강제력의 오차 범위에 대한 민감도 분석 결과, 모든 모의 범위에서 파티클 필터가 앙상블 칼만 필터보다 예측 성능이 우수하였다. 파티클 필터는 기상 강제력 오차 크기가 작을수록 모의 성능이 향상되었으며, 앙상블 칼만 필터는 상대적으로 오차가 큰 경우 최적 성능이 확인되었다. 한편, 자료동화시 갱신되는 상태량의 종류를 줄일수록 자료동화에 의한 모의 성능은 감소하였다. 본 연구의 모의 실험 결과는 앙상블 자료동화를 이용하여 일 유출 모의 정확도 향상이 가능하지만, 최적 성능을 발휘하기 위해서는 수문자료동화 기법별 하이퍼-매개변수의 적정한 조정이 필요함을 함의한다.
스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.
본 연구에서는 벼의 생물계절 예측 모형을 예시로 하여 해당 모형의 구동에 필요한 맞춤형 앙상블 상세기후예측자료를 구축하고 해당 자료의 보정방법을 고도화 하였을 때 농업적 활용 분야에서 가지는 부가가치를 확인해 보았다. 이를 위해, 벼의 생물계절 모의를 위해 집중적으로 필요한 기상자료인 1~10월의 일 평균/최저/최고 기온의 앙상블 장기(6개월) 전망자료를 생산하고 해당자료의 질을 높이기 위해 분위사상법 기반의 보정방법의 개선을 수행하였다. 그 결과 최저/최고/평균 기온 모두 대부분의 월에서 20일을 버퍼기간으로 선정하였을 때 4.51~15.37%까지 RMSE가 감소하는 것을 확인하였으며, 8~10월은 변수 및 월 별로 최적 버퍼기간이 다른 것을 확인하였다. 또한, 이러한 기상학적 변수의 개선은 벼의 생육단계별 시작일 예측이 모든 단계에서 7.82~10.60% 감소하였으며, 61개 ASOS 지점 가운데서도 생육단계에 따라 75~100%의 지점에서 RMSE가 감소하는 결과를 확인하였다. 본 연구 결과는 벼의 생물계절뿐만 아니라 감자, 고구마, 옥수수 등 타 작물로의 적용도 가능할 것으로 생각된다. 나아가, 일조시간, 습도, 풍속과 같은 예측변수들의 보정자료가 구축되면 농산물 작황전망, 병해충 예찰 등 다양한 분야의 학제간 연구에 적용하여 더 많은 부가가치 창출이 가능할 것으로 기대된다.
In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.
본 연구는 최근 가공 불량 예측 방법으로 주목받고 있는 머신러닝 기반의 모델을 이용하여 CNC 가공 불량 발생의 실시간 예측을 위한 분석 프레임워크를 제안하고, 해당 프레임워크에 기반하여 XGBoost, CatBoost, LightGBM, 랜덤 포레스트, Extra Trees, SVM, k-최근접 이웃, 로지스틱 회귀 모델을 CNC 설비에 기본 내장된 센서들로부터 추출된 데이터에 적용 및 분석하였다. 분석 결과 XGBoost, CatBoost, LightGBM 모델이 동일하게 가장 우수한 정확도, 정밀도, 재현율, F1 점수, AUC 값을 보였으며, 이 중 LightGBM 모델이 소요 실행 시간이 가장 짧은 것으로 나타났다. 이러한 짧은 소요 실행 시간은 실 시스템 구축 비용 절감, 빠른 불량 예측에 따른 CNC 장비 파손 확률 감소, 전체적인 CNC 활용률 증가 등의 실무적 장점을 가지므로 LightGBM 모델이 기본 센서들만 설치된 CNC 설비에 적용 시 가공 불량 예측에 가장 효과적으로 판단된다. 또한 소요 실행 시간 및 컴퓨팅 파워의 제약이 없는 상황에서는 LightGBM, Extra Trees, k-최근접 이웃, 로지스틱 회귀 모형으로 구성된 앙상블 모델을 적용할 경우 분류 성능이 최대화됨을 확인하였다.
The extinction crisis of local cities, caused by a population density increase phenomenon in capital regions, directly causes the increase of vacant houses in local cities. According to population and housing census, Gunsan-si has continuously shown increasing trend of vacant houses during 2015 to 2019. In particular, since Gunsan-si is the city which suffers from doughnut effect and industrial decline, problems regrading to vacant house seems to exacerbate. This study aims to provide a foundation of a system which can predict and deal with the building that has high risk of becoming vacant house through implementing a data driven vacant house prediction machine learning model. Methodologically, this study analyzes three types of machine learning model by differing the data components. First model is trained based on building register, individual declared land value, house price and socioeconomic data and second model is trained with the same data as first model but with additional POI(Point of Interest) data. Finally, third model is trained with same data as the second model but with excluding water usage and electricity usage data. As a result, second model shows the best performance based on F1-score. Random Forest, Gradient Boosting Machine, XGBoost and LightGBM which are tree ensemble series, show the best performance as a whole. Additionally, the complexity of the model can be reduced through eliminating independent variables that have correlation coefficient between the variables and vacant house status lower than the 0.1 based on absolute value. Finally, this study suggests XGBoost and LightGBM based machine learning model, which can handle missing values, as final vacant house prediction model.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권12호
/
pp.3330-3344
/
2023
This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.
수자원관리에 있어서 미래시구간에 대한 유량예측은 수자원시스템운영자에게 있어서 의사결정에 결정적인 영향을 미치는 가장 중요한 요소 중의 하나이다. 효율적 물배분이나 발전 등의 이수활동을 위해서 최소 월단위 이상의 장기유량예측이 필요하며, 이를 위해서는 강우예측이 선행되어야 하는데, 본 연구에서는 통합 실시간 물관리 운영시스템을 위한 중장기 유량예측을 목표로 방법론을 제시하고자 한다. 중장기 유량예측을 수행하는 대표적인 방법 중의 하나는 앙상블 유량예측(ESP; Ensemble Streamflow Prediction) 기법이다. ESP란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열앙상블을 모형입력으로 이용해서 강우-유출모형을 통하여 유출량을 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거강우관측기록, 미래강우예측에 대한 정보를 조합하여 그에 따른 유출앙상블을 생산해 내게 된다. 유출앙상블은 각 앙상블 트레이스가 갖게 되는 가중치에 따라 확률분포를 달리 갖게 되고 경우에 따라서는 유량으로부터 2차적으로 유도되는 변수들의 확률분포로 전이되기도 한다. 기존의 ESP 이론은 미국 NWS의 범주형 확률예보를 근간으로 하고 있어, 이를 국내 환경에 그대로 적용시키기에 어려움이 있어 왔다. 따라서 본 연구에서는 국내 기상청의 월간 강수전망을 이용하고, 이러한 정보의 특성에 맞는 ESP기법을 제시하였다. 더 나아가 중장기 수자원운영을 위한 일단위 월강수시나리오 구성을 위해서 수치예보와 월강수전망을 조합하여 ESP를 사용하는 기법을 제시하였다.
In this paper, a comparison between different methods to combine predictions from neural networks will be given. These methods are bagging, bumping, and balancing. Those are based on the analysis of the ensemble generalization error into an ambiguity term and a term incorporating generalization performances of individual networks. Neural Networks and AI machine learning models are prone to overfitting. A strategy to prevent a neural network from overfitting, is to stop training in early stage of the learning process. The complete data set is spilt up into a training set and a validation set. Training is stopped when the error on the validation set starts increasing. The stability of the networks is highly dependent on the division in training and validation set, and also on the random initial weights and the chosen minimization procedure. This causes early stopped networks to be rather unstable: a small change in the data or different initial conditions can produce large changes in the prediction. Therefore, it is advisable to apply the same procedure several times starting from different initial weights. This technique is often referred to as training ensembles of neural networks. In this paper, we presented a comparison of three statistical methods to prevent overfitting of neural network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.