• 제목/요약/키워드: Ensemble decision tree

검색결과 75건 처리시간 0.019초

기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구 (Sintering process optimization of ZnO varistor materials by machine learning based metamodel)

  • 김보열;서가원;하만진;홍연우;정찬엽
    • 한국결정성장학회지
    • /
    • 제31권6호
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO 바리스터는 다결정구조를 가지는 반도체 소자로 결정립과 입계의 미세구조 제어를 통해 비선형적인 전류/전압 특성을 가지기 때문에 서지(surge)전압으로부터 회로를 보호하는 역할을 한다. 이러한 ZnO 바리스터에서 원하는 전기적 물성을 얻기 위해서는 소결 공정에서 미세구조의 제어가 중요하다. 따라서 소결 공정에서 중요한 변수들과 소결체의 전기적 물성인 유전율로 구성된 데이터셋을 정의한 후 실험계획법 기반으로 데이터를 수집했다. 수집된 실험데이터셋을 기계학습 알고리즘에 학습하여 메타모델을 개발했고, 개발된 메타모델에 수치기반 최적화 알고리즘인 HMA(Hybrid Metaheuristic Algorithm)를 적용하여 최대 유전율을 가질 수 있는 공정조건을 도출했다. 이러한 메타모델 기반의 최적화를 다변수 시스템인 세라믹공정에 적용한다면 최소한의 실험만으로 최적 공정조건 탐색이 가능할 것으로 판단된다.

그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측 (Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification)

  • 옴마킨;이성근
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1269-1276
    • /
    • 2023
  • 작물 수확량 예측은 토양, 비, 기후, 대기 및 이들의 관계와 같은 다양한 측면으로 인해 다국적 식사와 강력한 수요에 필수적이며, 기후 변화는 농업 생산량에 영향을 미친다. 본 연구에서는 온도, 강수량, 습도 등의 데이터 세트를 운영한다. 현재 연구는 농부와 농업인을 지원하기 위해 다양한 분류기를 사용한 기능 선택에 중점을 두고 있다. 특징 선택 접근법을 활용한 작물 수확량 추정은 96% 정확도를 나타내었다. 특징 선택은 기계학습 모델의 성능에 영향을 미친다. 현재 그래프 분류기의 성능은 81.5%를 나타내며, 특징 선택이 없는 Random Forest 회귀 분석은 78%의 정확도를 나타냈다. 또한, 특징 선택이 없는 의사결정 트리 회귀 분석은 67%의 정확도를 유지하였다. 본 논문은 제시된 10가지 알고리즘을 대상으로 특징 선택 중요성에 대한 실험결과를 나타내었다. 이러한 결과는 작물 분류 연구에 적합한 모델을 선택하는 데 도움이 될 것으로 기대된다.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

사물인터넷 환경에서 랜덤포레스트를 이용한 실시간 낙상 사고 예측 (Real-time Fall Accident Prediction using Random Forest in IoT Environment)

  • 방찬우;김봉현
    • 사물인터넷융복합논문지
    • /
    • 제10권4호
    • /
    • pp.27-33
    • /
    • 2024
  • 2023년 기준 국내 건설업에서 발생한 사고 재해자 수는 26,829명으로 기타의 사업(서비스업)에 이어 두 번째에 해당한다. 전 업종 재해자 사고 유형으로는 넘어짐(29,229명), 떨어짐(14,357명) 순으로 이루어져 있다. 위 자료를 토대로 본 연구에서는 건설 현장에서 빈번하게 발생하는 낙상 사고를 예측하기 위해 안전모와 깔창에 센서를 부착하고, 이를 통해 수집된 데이터를 바탕으로 랜덤 포레스트 알고리즘을 적용한 스마트 안전 장비를 제안한다. 랜덤 포레스트 모델은 여러 결정 트리를 생성하여 각 트리의 예측을 종합함으로써 높은 정확도로 낙상 사고를 실시간으로 판별할 수 있다. 이 모델은 안전모에 부착된 MPU-6050 센서에서 수집된 데이터를 통해 노동자의 낙상 사고 여부와 행동 유형을 분류한다. 안전모로부터 일차적으로 판별된 낙상사고는 깔창에 부착된 센서를 통해 이차적으로 예측하여, 예측 정확도를 높인다. 이를 통해 사고 발생 시 신속한 대응이 가능하여 노동자의 사망 및 재해사고를 줄일 수 있다고 기대한다.

기계학습을 이용한 식품위생점검 체계의 효율성 개선 연구 (Improving Efficiency of Food Hygiene Surveillance System by Using Machine Learning-Based Approaches)

  • 조상구;조승용
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.53-67
    • /
    • 2020
  • 본 연구는 가공식품의 제조·가공 업소를 대상으로 기계학습 분야의 지도학습(Supervised Learning) 예측 모형을 적용하여 부적합이 예상되는 업체를 사전에 적발하는 단속 선별시스템을 마련하여 단속 활동의 효율성을 높이고자 하였다. 본 연구에서는 머신러닝의 예측 모델링을 위한 목적 정의, 데이터의 기초 분석과 시각화, 특성 변수 도출 및 예측 모형의 선정 및 예측 등으로 기계학습 수행의 표준적인 절차에 따라 연구를 수행하였다. 종속변수는 2014년도부터 2018년까지 과거 5년 동안 지도점검 적발 건수로 설정하였고, 목적함수는 실제 부적합업체를 사전에 판정하여 단속활동이 이루어지는 것을 최대화하는 것으로 하였다. 제조가공업소의 매출액, 영업일수, 종업원 수 등 기본속성뿐만 아니라 과거 지도점검 단속 이력 정보를 반영하여 자료를 재구성하였다. 특성 변수 추출 방법을 적용하여 부적합 판정에 영향을 미치는 업체 위험, 품목 위험, 환경 위험 및 과거 위반 이력 등을 특성 변수로 도출하여 머신러닝 알고리즘을 데이터에 적용하였다. 랜덤포레스트 모형이 식품의약품안전처 지도점검 업무 목적에 가장 적합한 것으로 나타났다. 본 연구결과를 바탕으로 식품안전 관리 국가 사무가 데이터기반의 과학적인 행정 체계로 발전할 수 있는 기반이 되기를 기대한다.