• Title/Summary/Keyword: Ensemble averaged velocity

Search Result 52, Processing Time 0.023 seconds

Effect of deflected inflow on flows in a strongly-curved 90 degree elbow

  • Iwamoto, Yukiharu;Kusuzaki, Ryo;Sogo, Motosuke;Yasuda, Kazunori;Yamano, Hidemasa;Tanaka, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.76-85
    • /
    • 2017
  • Wall pressure measurements and flow visualization were conducted for a 90 degree elbow with an axis curvature radius the same as its inner diameter (125 mm). Reynolds numbers 320,000 and 500,000, based on the inner diameter and bulk velocity, were examined. A deflected inflow, having an almost constant velocity slope and a faster velocity at the inside, was introduced. Ensemble averaged pressure distributions showed that no difference of normalized pressure could be found in both the Reynolds number cases. Power spectral density functions of pressures exhibited that the fluctuation having the Strouhal number (based on the inner diameter and bulk velocity) of 0.6 existed in the downstream region of the elbow, which was 0.1 larger than that of the uniform inflow case [1]. Results of numerical calculations qualitatively coincided with the experimental ones.

Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor (다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성)

  • Shin, You-Hwan;Elder, Robin L;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.690-695
    • /
    • 2001
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space with a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D, volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

  • PDF

Drag Reduction of NACA0012 Airfoil with a Flexible Micro-riblet (마이크로 리블렛이 부착된 NACA0012 익형의 항력 감소 연구)

  • Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.479-482
    • /
    • 2002
  • Riblets with longitudinal grooves along the streamwise direction have been used as an effective flow control technique for drag reduction. A flexible micro-riblet with v-grooves of peak-to-peak spacing of $300{\mu}m$ was made using a MEMS fabrication process of PDMS replica. The flexible micro-riblet was attached on the whole surface of a NACA0012 airfoil with which grooves are aligned with the streamwise direction. The riblet surface reduces drag coefficient about $7.9{\%}\;at\;U_o=3.3m/s$, however, it increases drag about $8{\%}\;at\;U_o=7.0m/s$, compared with the smooth airfoil without riblets. The near wake has been investigated experimentally far the cases of drag reduction ($U_o\;=\;3.3 m/s$) and drag increase ($U_o\;=\;7 m/s$). Five hundred instantaneous velocity fields were measured for each experimental condition using the cross-correlation PIV velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to get spatial distribution of turbulent statistics such as turbulent kinetic energy. The experimental results were compared with those of a smooth airfoil under the same flow condition. The micro-riblet surface influences the near wake flow structure largely, especially in the region near the body surface

  • PDF

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.773-780
    • /
    • 2003
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space and a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D. volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

Effects of Stroke Change on Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve SI Engine (Stroke 변화가 Four-Valve SI 기관 실린더내 난류 운동에너지에 미치는 영향)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2011
  • The effects of stroke change on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same intake manifold, head, cylinder, and the piston were used to examine turbulence characteristics in two different strokes. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke. However, in the absence of two counter rotating vortices, this intake generated turbulent kinetic energy continues to decrease but at a much faster rate.

Flow Direction Characteristics in the Vicinity of the Spark Plug in an S. I. Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.891-899
    • /
    • 2000
  • The flame speed may be decomposed into the burning speed and the flame transport speed. The flame transport speed is affected considerably by the flow direction, variation rate of flow direction, and flow speed in the combustion chamber. Especially, the flow direction and the variation rate of flow direction at the spark plug location during the ignition period have an important effect on the ignition process and the early flame propagation process. We measured the flow direction component and the variation rate of flow direction with a hot wire probe at the spark plug location. It was shown that the representative flow direction of ignition period is the right-vertical direction of crank shaft and it was used to investigate the variation rate of flow direction.

  • PDF

Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines (Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향)

  • 유성출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement (3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구)

  • Yoo, S.C.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

An Experimental Study of In-Cylindeer Flow Characteristics of a High Speed Direct Injection Diesel Engine (고속 직접분사식 디젤엔진의 실린더내 유동특성에 관한 실험적 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In-cylinder flow of a purpose-built small HSDI Hydra Diesel engine was investigated by laser Doppler velocimetry(LDV) during induction and compression processes. The flow was quantified in terms of ensemble-averaged axial and swirl velocities, normalized by the mean piston speed, at a plane located 12mm from the cylinder head and corresponding to the mid-plane of the diametrically-opposed quartz windows at an enigne speed of 1000rpm. The formation of toroidal vortices during the intake process and the evolution and decay of swirl motion during the compression process were observed. Turbulence at around TDC of compression became homogeneous and isotropic.

  • PDF