• 제목/요약/키워드: Enhancement of conductivity

검색결과 195건 처리시간 0.028초

Electrochemical properties of PEO-based solid polymer electrolytes blended with different room temperature ionic liquids

  • Kim, Y.H.;Cheruvally, G.;Choi, J.W.;Ahn, J.H.;Kim, K.W.;Ahn, H.J.;Song, C.E.;Choi, D.S.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.276-276
    • /
    • 2006
  • The incorporation of room temperature ionic liquids (IL) in poly (ethyleneoxide)-lithium salt (PEO-LiX) based solid polymer electrolytes is presently being studied as an effective means of enhancing the room temperature ionic conductivity of these electrolytes to acceptable levels for use in lithium batteries. In the present study, $PEO_{20}-LiTFSI$ solid polymer electrolyte was blended with three different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIMTFSI), 1-butyl-3-methylimidazolium tetraflouroborate (BMIMBF4) and 1-butyl-3-methylimidazolium trifluromethanesulfonate ($BMIMCF_{3}SO_{3}$). The incorporation of all these ILs resulted in the enhancement of ionic conductivity, the effect being more pronounced at lower temperatures. Electrochemical properties of the blended electrolytes were studied by cyclic voltammetry, linear sweep voltammetry and interfacial resistance measurements. The optimum results were obtained with the blending of BMIMTFSI in the solid polymer electrolyte.

  • PDF

Pt/Ti 격자형 평판 전극을 이용한 혼합 산화제 생성 및 E. coli 불활성화 (Formation of Mixed Oxidants and Inactivation of E. coil by the Electrochemical Process using a Grid Shape Pt/Ti Electrode)

  • 정연정;오병수;박상연;백고운;강준원
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.851-855
    • /
    • 2006
  • The aim of this study was to investigate characteristics of formation of mixed oxidants and some aspects of the performance of electrochemical process as an alternative disinfection strategy for water purification. The study of electrochemical process has shown free chlorine to be produced, but smaller amounts of stronger oxidants, such as ozone, hydrogen peroxide and OH radicals, were also generated. The formation of ozone and hydrogen peroxide increased with increasing electric conductivity, but was limited at conductivities greater than 0.6 mS/cm. Also, formation of OH radical was enhanced as electric conductivity was increased to 0.9 mS/cm and The stead-state concentrations of OH radical were calculated at $1.1{\sim}6.4{\times}10^{-14}M$. Using E. coti, inactivation kinetic studies were performed. With the exception of free chlorine, the role of mixed oxidants, especially OH radical, was investigated for enhancement of the inactivation rate.

Ferromagnetism and p-type Conductivity in Laser-deposited (Zn,Mn)O Thin Films Codoped by Mg and P

  • Kim, Hyo-Jin;Kim, Hyoun-Soo;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil;Hwang, Chan-Yong
    • Journal of Magnetics
    • /
    • 제12권4호
    • /
    • pp.144-148
    • /
    • 2007
  • We report on the observation of p-type conductivity and ferromagnetism in diluted magnetic semiconductor $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films grown on $SiO_2/Si$ substrates by pulsed laser deposition. The p-type conduction with hole concentration over $10^{18}cm^{-3}$ is obtained by codoping of Mg and P followed by rapid thermal annealing in an $O_2$ atmosphere. Structural and compositional analyses for the p-type $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films annealed at $800^{\circ}C$ indicates that highly c-axis oriented homogeneous films were grown without any detectable formation of secondary phases. The films were found to be transparent in the visible range. The magnetic measurements clearly revealed an enhancement of room temperature ferromagnetism by p-type doping.

Aluminum Effect as Additive Material in Expanded Graphite/Sand Composite for High Thermal Conductivity

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Ali, Asghar;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.422-430
    • /
    • 2017
  • Al/expanded graphite was successfully synthesized through a facile method including ultrasonic and heat treatment. In the well-designed three dimensional structure, expanded graphite(EG) works as a conductive matrix to support coated Al particles. The effects of the fabrication parameters on the microstructures and thermal conductivities of these composites were investigated. As a result, it was found that composites with graphite volume fraction of 17.4-69.4 % sintered at $600^{\circ}C$/45MPa exhibit in-plane thermal conductivities of 380-940 W/mK, over 90 % of the predictions by rule of mixture. According to the non-destructive analysis results, the synergistic enhancement was caused by the formation of efficient thermally conductive pathways due to the hybrid of the differently sized EG. The structure integrates the advantages of expanded graphite as a conductive support, preserving the electrode activity and integrity and improving the electrochemical performance.

화학적 합성에 의해 제조된 직접 메탄올 연료전지용 나피온/백금/폴리피롤 복합 막의 특성 분석 (Characterization of Nafion/Pt/Polypyrrole Composite Membrane Prepared by Chemical In-situ Polymerization for DMFC)

  • 박호석;김여진;임현숙;최봉길;홍원희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.421-424
    • /
    • 2006
  • Nafion/Pt/Polypyrrole composite membranes were fabricated by chemical in-situ polymerization of pyrrole monomers with Pt precursors in Nafion matrix for DMFC. We demonstrated that positively charged pyrrolinum groups of polypyrrole particles were co-interacted with sulfonic groups of Nafion as verified by FT-IR results. Mutual interaction between $Nafion-SO_3^-$ (or negatively charged Pt precursors) and Polypyrrole$-NH_2^+$ influenced the physical properties of pristine Nafion. Thermal property proton conductivity, methanol permeability, and cell performance of pristine and modified Nafion were analyzed for an application of DMFC membrane. Thermal stabilities of sulfonic groups and side chains in Nafion/Pt/polypyrrole composite membranes were higher than those of Nafion due to mutual interaction between sulfonic groups of Nafion and pyrrolinum groups of polypyrrole. Methanol permeabilities of Nafion/Pt/Polypyrrole composite were reduced more proton conductivities with the increase in the content of Pt particles. As a result of that, the enhancement of cell performance by Nafion/Pt/Polypyrole O2 relative to Nafion was more pronounced under the specific experimental condition such as high temperature and more concentrated methanol solution.

  • PDF

탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가 (Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles)

  • 최철;정미희;오제명
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향 (Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application)

  • 최철;유현성;오제명
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.493-499
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

ITO를 대체한 고효율 유기박막 태양전지 (Replacement of ITO for efficient organic polymer solar cells)

  • 김재령;박진욱;이보현;이표;이종철;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF

다양한 파쇄 유체별 파쇄압력, 투과도 증진 및 균열전파에 관한 실험적 연구 (Experimental Study on Fracture Pressure, Permeability Enhancement and Fracture Propagation using Different Fracture Fluids)

  • 최준형;이현석;김도영;남정현;이대성
    • 터널과지하공간
    • /
    • 제31권1호
    • /
    • pp.41-51
    • /
    • 2021
  • 치밀 저류층의 투과도 증진을 위해 개발된 수압파쇄 기술은 셰일가스와 같은 비전통자원과 심부지열 개발에 필수적인 기술 중 하나이다. 파쇄형태가 단순하고 파쇄효율이 좋지 않은 수압파쇄를 개선하기 위해 다양한 파쇄유체를 이용한 실험적 연구가 진행되었다. 물, N2, CO2 가스를 파쇄유체로 사용하여 치밀 암석에 대한 파쇄형태와 효율성을 분석하였다. 파쇄유체로 물을 일정 주입속도로 주입한 경우 순간적으로 압력이 상승하여 파쇄가 발생하였으나, 파쇄유체로 가스를 주입한 경우 서서히 압력이 증가되면서 물보다 낮은 파쇄압력을 보였다. 3D 단층촬영 기법을 이용하여 물과 가스 주입으로 생성된 균열을 관찰한 결과는 기존 공극부피 대비 파쇄 자극부피가 각각 5.71%(물), 12.72%(N2), 43.82%(CO2) 증가되었다. 또한 파쇄유체의 파쇄 효율성을 검정하기 위한 파쇄 전후 투과도 변화 실험에서는 가스 파쇄에 의해 증가되는 투과도 증가 값이 물을 이용한 파쇄보다 훨씬 높게 측정되었다. 파쇄 이후 인공균열의 생성과 주변응력에 의해 다시 균열이 닫히는 현상을 고려하여 생성된 인공균열에 구속압을 단계별로 증가시켜 투과도 변화를 측정하였다. 구속압이 2MPa에서 10MPa로 증가시켰을 경우 초기 투과도 대비 각각 89%(N2), 50%(CO2) 감소하였다. 본 연구는 가스파쇄기술이 수압파쇄보다 투과도 증진 효과가 크고 이후 주변 응력에 의한 투과도 감소가 적은 것으로 나타났다.