• Title/Summary/Keyword: Enhanced Distributed Channel Access

Search Result 28, Processing Time 0.023 seconds

Per Class Delay Estimation to Guarantee Dynamic Priority for Multimedia Traffic (멀티미디어 트래픽의 동적 우선순위를 보장하기 위한 클래스별 지연 시간 예측 기법)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.283-286
    • /
    • 2011
  • 무선 멀티홉 네트워크에서 멀티미디어 트래픽의 QoS(Quality of Service) 지원을 위하여 EDCA(Enhanced Distributed Channel Access) 기반의 동적 우선순위 할당 기법이 다수 제안되었다. 해당 기법들은 각 홉에서의 최소한의 전송 지연 보장을 위하여 클래스별 예상 지연 시간을 계산한다. 하지만 각 클래스별 예상 지연 시간의 계산은 무선 채널에서의 간섭, 충돌 및 링크 품질에 영향을 받기 때문에 정확한 예측이 어렵다. 본 논문에서는 EDCA 기반의 동적 우선순위 할당을 위한 정교한 클래스별 지연 시간 예측 기법을 제안한다. 제안하는 기법은 무선 채널의 링크 품질과 전송 패킷의 크기를 고려하여 좀더 실제와 유사한 지연 시간을 예측할 수 있다. 실험을 통해 제안하는 기법이 기존의 기법보다 정확성이 높으며 이를 통해 동적 우선순위 할당 기법의 성능을 향상시킬 수 있음을 확인하였다.

Adaptive Contention Window Method for QoS-Multimedia Traffic in WLAN (무선 랜 환경에서 QoS-Multimedia Traffic을 지원하기 위한 Adaptive Contention Window 기법)

  • Seo, Ji-Hun;Cho, Keu-Chul;Han, Ji-Hun;Han, Ki-Jun
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.203-206
    • /
    • 2014
  • 무선 LAN(Wireless Local Area Networks 의 DCF(Distributed Coordination Function) 방식은 랜덤 백 오프 방식으로 매체에 접근하기 때문에 지연이 발생하여 정해진 시간 내에 전송을 보장할 수 없다는 단점이 있다. [1] 이는 곧 실시간 멀티미디어 트래픽(비디오, 음성 등)의 QoS(Quality Of Service)를 보장할 수 없다는 것을 뜻한다. 또한 IEEF 802.11e 표준 [2]에서 제공하는 QoS 를 위한 EDCA(Enhanced Distributed Channel Access)라는 프로토콜은 제시되어있으나 실제로 구현되어있는 디바이스의 부재로 QoS 를 지원하기가 어렵다. 따라서 무선 랜에서 IEEE 802.11e 를 지원하지 않는 망내 디바이스, 즉 큐가 1 개인 STA, 즉 기본적인 802.11 표준 기술인 DCF 를 사용하는 STA 을 위해서 멀티미디어 트래픽의 실시간 전송을 보장하기 위한 기법을 제시한다.

An Admission Control Mechanism to guarantee QoS of Streaming Service in WLAN (WLAN에서 스트리밍 서비스의 QoS를 보장하기 위한 승인 제어 기술)

  • Kang, Seok-Won;Lee, Hyun-Jin;Lee, Kyu-Hwan;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.595-604
    • /
    • 2009
  • The HCCA reserves the channel resources based on the mean data rate in IEEE 802.11e. It may cause either the waste of channel resource or the increase of transmission delay at MAC layer if the frame size is rapidly varied when a compressed mode video codec such as MPEG video is used. To solve these problems, it is developed that the packet scheduler allocates the wireless resource adaptation by according to the packet size. However, it is difficult to perform the admission control because of the difficulty with calculating the available resources. In this paper, we propose a CAC mechanism to solve the problem that may not satisfy the QoS by increasing traffic load in case of using EDCA. Especially, the proposed CAC mechanism calculates the EB of TSs using the traffic information transmitted by the application layer and the number of average transmission according to the wireless channel environment, and then determines the admission of the TS based on the EB. According to the simulation results of the proposed CAC mechanism, it admitted the TSs under the loads which are satisfied within the delay bound. Therefore, the proposed mechanism guarantees QoS of streaming services effectively.

Distributed MIMO Systems Based on Quantize-Map-and-Forward (QMF) Relaying (양자화 전송 중계 기반 분산 다중 안테나 통신 시스템)

  • Hong, Bi;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.404-412
    • /
    • 2014
  • Exploiting multiple antennas at mobile devices is difficult due to limited size and power. In this paper, a distributed MIMO protocol achieving the capacity of conventinal MIMO systems is proposed and analyzed. For exploiting distributed MIMO features, Quantize-Map-and-Forward (QMF) scheme shows improved performance than Amplify-and-Forward (AF) scheme. Also, the protocol based on multiple access channel (MAC) is proposed to improve the multiplexing gain. We showed that sufficient condition of the number of slave nodes to achieve the gain of a MAC based protocol. Because the base station can support multiple clusters operating in distributed MIMO, the total cellular capacity can be extremely enhanced in proportional to the number of clusters.

Performance Enhancement of CSMA/CA MAC DCF Protocol for IEEE 802.11a Wireless LANs (IEEE 802.11a 무선 LAN에서 CSMA/CA MAC DCF 프로토콜의 성능 향상)

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • A basic access method using for IEEE 802.11a wireless LANs is the DCF method that is based on the CSMA/CA. But, Since IEEE 802.11 MAC layer uses original backoff algorithm (Exponential backoff method), when collision occurs, the size of contention windows increases the double size. Hence, packet transmission delay time increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs using a proposed enhanced backoff algorithm. From the results, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between TCP packet size and total message transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

A Distributed Dynamic Address Assignment for Tactical Mobile Ad-hoc Networks (전술 MANET에서 그룹 단위 분산된 동적 주소 할당 기법)

  • Park, Mun-Young;Lee, Jong-Kwan;Baek, Ho-Ki;Kim, Du-Hwan;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.327-335
    • /
    • 2014
  • In this paper, we propose a group distributed dynamic address assignment scheme suitable for tactical mobile ad hoc networks(MANET). Efficient address assignment is an important issue in the MANET because a node may frequently leave the current network and join another network owing to the mobility of the node. The conventional schemes do not consider the features of the tactical networks: existence of a leader node and network activity on a group basis. Thus, they may not be suitable for military operations. In our proposed scheme, called grouped units dynamic address assignment protocol(G-DAAP), a leader node maintains the address information for the members in the network and any of the nodes can exploit the information for the assignment or request of the IP address by a simple message exchange procedure. This leads to fast address assignment with small overheads. In addition, G-DAAP based on the modified IEEE 802.11e Enhanced Distributed Channel Access(EDCA) can assign addresses more quickly. We describe the delay performance of the G-DAAP and compare it with conventional schemes by numerical analysis and computer simulations. The results show that the G-DAAP significantly improves the delay performance as compared with the conventional schemes.

Performance Modelling of Adaptive VANET with Enhanced Priority Scheme

  • Lim, Joanne Mun-Yee;Chang, YoongChoon;Alias, MohamadYusoff;Loo, Jonathan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1337-1358
    • /
    • 2015
  • In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p's Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme.

A Cross-Layer based Video Transmission Scheme using Efficient Bandwidth Estimation in IEEE 802.11e EDCA (IEEE 802.11e EDCA에서 효율적인 대역폭 측정을 통한 Cross-Layer 기반의 비디오 전송 기법)

  • Shin, Pil-Gyu;Lee, Sun-Hun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Promoting quality of streaming service in wireless networks has attracted intensive research over the years. Instable wireless channel condition causes high transmission delay and packet loss, due to fading and interference. Therefore, they lead to degrade quality of video streaming service. The IEEE 802.11 Working Group is currently working on a new standard called IEEE 802.11e to support quality of service in WLANs. And several schemes were proposed in order to guarantee QoS. However, they are not adaptable to network condition. Accordingly, they suffered video quality degradation, due to buffer overflow or packet loss. In this paper, to promote quality of video streaming service in WLANs, we propose a cross-layer architecture based on IEEE 802.11e EDCA model. Our cross-layer architecture provides differentiated transmission mechanism of IEEE 802.11e EDCA based on priority of MPEG-4 video frames and adaptively controls the transmission rate by dropping video frames through the efficient bandwidth estimation based on distinction of each AC. Through the simulation, proposed scheme is shown to be able to improve end-to-end qualify for video streaming service in WLANs.