• 제목/요약/키워드: English-Korean parallel corpus

검색결과 24건 처리시간 0.021초

언어 자원과 토픽 모델의 순차 매칭을 이용한 유사 문장 계산 기반의 위키피디아 한국어-영어 병렬 말뭉치 구축 (Building a Korean-English Parallel Corpus by Measuring Sentence Similarities Using Sequential Matching of Language Resources and Topic Modeling)

  • 천주룡;고영중
    • 정보과학회 논문지
    • /
    • 제42권7호
    • /
    • pp.901-909
    • /
    • 2015
  • 본 논문은 위키피디아로부터 한국어-영어 간 병렬 말뭉치를 구축하기 위한 연구이다. 이를 위해, 언어 자원과 토픽모델의 순차 매칭 기반의 유사 문장 계산 방법을 제안한다. 먼저, 언어자원의 매칭은 위키피디아 제목으로 구성된 위키 사전, 숫자, 다음 온라인 사전을 단어 매칭에 순차적으로 적용하였다. 또한, 위키피디아의 특성을 활용하기 위해 위키 사전에서 추정한 번역 확률을 단어 매칭에 추가 적용하였다. 그리고 토픽모델로부터 추출한 단어 분포를 유사도 계산에 적용함으로써 정확도를 향상시켰다. 실험에서, 선행연구의 언어자원만을 선형 결합한 유사 문장 계산은 F1-score 48.4%, 언어자원과 모든 단어 분포를 고려한 토픽모델의 결합은 51.6%의 성능을 보였으나, 본 논문에서 제안한 언어자원에 번역 확률을 추가하여 순차 매칭을 적용한 방법은 58.3%로 9.9%의 성능 향상을 얻었고, 여기에 중요한 단어 분포를 고려한 토픽모델을 적용한 방법이 59.1%로 7.5%의 성능 향상을 얻었다.

병렬말뭉치를 이용한 대체어 자동 추출 방법 (Automatic Extraction of Alternative Words using Parallel Corpus)

  • 백종범;이수원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권12호
    • /
    • pp.1254-1258
    • /
    • 2010
  • 정보 검색에 있어서 통일 객체를 다양한 표기로 기술하는 문제는 시스템의 성능을 저하시키는 요인이 된다. 본 연구에서는 이러한 문제를 해결하기 위하여 특허 정보의 국/영문 제목을 병렬말뭉치로 이용하여 대역어 뭉치를 추출하고, 이를 각 단어의 특징(Feature)으로 이용하여 대체어 목록을 자동 추출하는 방법을 제안한다. 또한 대체어 목록 내에 대체어가 아닌 다수의 연관단어들이 포함되는 문제점을 해결하기 위하여 국문 제목에서 추출한 연관단어 뭉치를 이용하여 대체어 목록 내 연관단어들을 필터링하는 방법을 제안한다. 평가결과에 따르면 본 연구에서 제안한 방법이 기존의 대체어 추출 방법들보다 더 우수한 것으로 나타났다.

영-한 병렬 코퍼스로부터 외래어 표기 사전의 자동 구축 (Automatic Construction of Foreign Word Transliteration Dictionary from English-Korean Parallel Corpus)

  • 이재성
    • 컴퓨터교육학회논문지
    • /
    • 제6권2호
    • /
    • pp.9-21
    • /
    • 2003
  • 본 논문에서는 한국어 번역문과 영어 원문으로 구성된 병렬 코퍼스로부터 자동으로 외래어 표기 사전을 구축하는 시스템을 제안한다. 구축 시스템은 첫 단계로 한국어 문서에서 명사를 추출하고, 두 번째 단계에서 추출된 명사 중 언어 모델에 근거하여 외래어만을 추출한 후, 마지막 세 번째 단계에서 확률적 정렬 방법을 이용하여 외래어에 대응되는 영어를 추출한다. 특히, 외래어는 한국어 어미나 조사가 붙어서 같이 쓰이기 때문에, 한국어 어절 내에서 정확하게 외래어 부분만을 분리하기 위해, 병렬 코퍼스 내에 존재하는 대응 영어 단어 정보를 활용하였다. 또, 문자체계가 다른 두 단어를 같은 문자로 변환하지 않고 직접 음운 유사도를 비교할 수 있도록 했다. 실험 결과, 성능은 전처리 단계인 한국어 미등록어 및 외래어 추정에 영향을 많이 받았고, 수작업으로 전처리를 한 모델 중 가장 성능이 높은 것은 재현률 85.4%, 정확률 91.0%를 보였고, 전 과정을 자동으로 한 모델중에서는 재현률 68.3%, 정확률 89.2%를 보였다.

  • PDF

감정점수의 전파를 통한 한국어 감정사전 생성 (Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation)

  • 박호민;김창현;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 2020
  • 감정분석은 문서 또는 대화상에서 주어진 주제에 대한 태도와 의견을 이해하는 과정이다. 감정분석에는 다양한 접근법이 있다. 그 중 하나는 감정사전을 이용하는 사전 기반 접근법이다. 본 논문에서는 널리 알려진 영어 감정사전인 VADER를 활용하여 한국어 감정사전을 자동으로 생성하는 방법을 제안한다. 제안된 방법은 세 단계로 구성된다. 첫 번째 단계는 한영 병렬 말뭉치를 사용하여 한영 이중언어 사전을 제작한다. 제작된 이중언어 사전은 VADER 감정어와 한국어 형태소 쌍들의 집합이다. 두 번째 단계는 그 이중언어 사전을 사용하여 한영 단어 그래프를 생성한다. 세 번째 단계는 생성된 단어 그래프 상에서 레이블 전파 알고리즘을 실행하여 새로운 감정사전을 구축한다. 이와 같은 과정으로 생성된 한국어 감정사전을 유용성을 보이려고 몇 가지 실험을 수행하였다. 본 논문에서 생성된 감정사전을 이용한 감정 분류기가 기존의 기계학습 기반 감정분류기보다 좋은 성능을 보였다. 앞으로 본 논문에서 제안된 방법을 적용하여 여러 언어의 감정사전을 생성하려고 한다.

위키피디아로부터 한국어-영어 병렬 문장 추출 (Extracting Korean-English Parallel Sentences from Wikipedia)

  • 김성현;양선;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제41권8호
    • /
    • pp.580-585
    • /
    • 2014
  • 본 연구는 '위키피디아 데이터를 이용한 병렬 문장 추출'이라는 주제에 대해서, 기존에 해외에서 사용되었던 다양한 방법을 한국어 위키피디아 데이터에 실제로 적용해보고 그 결과를 정리하여 보고한다. 실험 방식은 두 가지로 나눌 수 있는데, 첫 번째는 번역 확률을 이용하는 방법으로 세종 병렬 말뭉치 등의 기존 자원으로부터 번역 확률을 추출하여 사용한다. 두 번째는 사전을 이용하는 방법으로, 위키피디아 타이틀로 구성된 위키 사전(Wiki dictionary)을 기본으로 하여, MRD(machine readable dictionary) 정보와 숫자 사전을 추가로 사용한다. 실험 결과, 기존 자원만 이용한 경우보다 위키피디아 데이터를 결합하여 사용한 경우에 매우 큰 폭의 성능 향상을 얻어, 최종적으로 F1-score 57.6%의 우수한 성능을 산출하였다. 또한 토픽 모델(topic model)을 이용한 실험도 추가로 수행하였는데, F1-score 51.6%로 최종 성능 면에서는 낮았지만 비지도 학습 방법이라는 장점을 고려할 때 추가 연구에 대한 여지가 있다고 볼 수 있다.

정렬기법을 이용한 미등록 대역어의 자동 추출 (Automatically Extracting Unknown Translations Using Phrase Alignment)

  • 김재훈;양성일
    • 정보처리학회논문지B
    • /
    • 제14B권3호
    • /
    • pp.231-240
    • /
    • 2007
  • 이 논문은 정렬 기법을 이용한 미등록 대역어 추출 모델을 제안하고 그 추출 시스템을 구현한다. 제안된 미등록 대역어 추출 모델은 일종의 구절정렬 모델로서 경계모델과 언어모델 그리고 번역 모델로 구성된다. 제안된 추출 시스템은 병렬말뭉치 구축, 단어정렬, 미등록어 추출로 구성된다. 이 논문에서는 제안된 시스템을 평가하기 위해서 약 1,500여 개의 미등록어가 포함된 2,200문장의 평가말뭉치를 구축하여 다양한 실험을 수행하였다. 실험을 통해서 제안된 모델이 미등록 대역어 추출에 매우 유용함을 알 수 있었다. 앞으로 좀 더 객관적인 평가를 위해 대량의 평가말뭉치 구축이 선행되어야 하며 좀 더 양질의 병렬말뭉치의 구축이 필요할 것이다. 또한 미등록어 추출 모델을 개선하기 다양한 연구가 추진되어야 할 것이다.

웹 문서로부터 한영 병렬말뭉치의 자동 구축 (Automatically Constructing English-Korean Parallel Corpus from Web Documents)

  • 서형원;김형철;조희영;김재훈;양성일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.161-164
    • /
    • 2006
  • 인터넷이 발전하면서 웹에는 같은 내용을 다양한 언어로 표현한 문서들이 많이 존재한다. 이와 같은 웹 문서의 성질을 이용하여, 이 논문은 웹으로부터 수집된 병렬문서(parallel document)를 이용하여 한영 병렬말뭉치 구축 시스템을 설계하고 구현한다. 이 논문에서 구축과정을 요약하면 다음과 같다. 첫째, 웹 문서수집기를 이용해서 웹으로부터 한영 웹문서(html 문서)를 각각 수집한다. 둘째, 수집된 각 언어의 웹 문서에서 불필요한 내용(태그와 광고 문구 등)을 제거하여 문장을 추출하고, 추출된 문장을 단락단위로 정렬한다. 셋째, 단락단위로 정렬된 문서를 문장정렬(sentence alignment) 방법을 이용해서 문장을 정렬한다. 끝으로 정렬된 병렬문장을 단어 단위로 분리하여 병렬말뭉치를 구축한다. 이와 같은 방법으로 이 논문에서는 약 42만 5천 문장의 한영 병렬말뭉치를 구축하였다.

  • PDF

한국어-영어 법률 말뭉치의 로컬 이중 언어 임베딩 (Utilizing Local Bilingual Embeddings on Korean-English Law Data)

  • 최순영;;임희석
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.45-53
    • /
    • 2018
  • 최근 이중 언어 임베딩(bilingual word embedding) 관련 연구들이 각광을 받고 있다. 그러나 한국어와 특정 언어로 구성된 병렬(parallel-aligned) 말뭉치로 이중 언어 워드 임베딩을 하는 연구는 질이 높은 많은 양의 말뭉치를 구하기 어려우므로 활발히 이루어지지 않고 있다. 특히, 특정 영역에 사용할 수 있는 로컬 이중 언어 워드 임베딩(local bilingual word embedding)의 경우는 상대적으로 더 희소하다. 또한 이중 언어 워드 임베딩을 하는 경우 번역 쌍이 단어의 개수에서 일대일 대응을 이루지 못하는 경우가 많다. 본 논문에서는 로컬 워드 임베딩을 위해 한국어-영어로 구성된 한국 법률 단락 868,163개를 크롤링(crawling)하여 임베딩을 하였고 3가지 연결 전략을 제안하였다. 본 전략은 앞서 언급한 불규칙적 대응 문제를 해결하고 단락 정렬 말뭉치에서 번역 쌍의 질을 향상시켰으며 베이스라인인 글로벌 워드 임베딩(global bilingual word embedding)과 비교하였을 때 2배의 성능을 확인하였다.

과도한 지식을 요구하지 않는 공통기반축에 의한 용어 번역과 한영 교차정보검색에의 응용 (Knowledge-poor Term Translation using Common Base Axis with application to Korean-English Cross-Language Information Retrieval)

  • 최용석;최기선
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.29-40
    • /
    • 2003
  • 교차언어 정보검색은 다국어 정보검색의 일부분으로 질의어에서 사용하는 언어와 검색대상인 문서의 언어가 서로 다른 경우의 정보검색을 의미한다. 교차언어 정보검색의 성능 향상을 위해서는 양질의 언어자원이 대량으로 필요한 경우가 많기 때문에 이를 해결하기 쉽지 않다. 본 논문에서는 사전에 기반한 대역어 후보 선정 시, 가중치를 부여해 질의어를 변환하는 방식을 제안한다. 가중치 계산에 이용되는 의미거리는 영어 명사와 한국어 명사를 같은 벡터 공간에 표현하고, 두 벡터간의 관계를 이용해 거리를 계산한다. 서로 다른 두 언어의 명사를 한 공간에 표현하기 위해 "공통 기반축"의 개념을 제시하고, 구축 방법을 제안한다. 고급 자원인 온톨로지를 확보하지 않고, 제안하는 방법으로 우수한 정보검색 결과를 얻을 수 있다는 것을 실험을 통해 보여준다.을 통해 보여준다.

  • PDF

적응형 채도 향상 알고리즘을 이용한 컬러 영상 처리 기법 (The Method of Color Image Processing Using Adaptive Saturation Enhancement Algorithm)

  • 양경옥;윤종호;조화현;최명렬
    • 정보처리학회논문지B
    • /
    • 제14B권3호
    • /
    • pp.145-152
    • /
    • 2007
  • 본 논문에서는 LCD 모니터, LCD TV, PDP TY, OLED TV 등과 같은 평판 디스플레이 장비를 위한 적응형 칼라 영상 향상 알고리즘에 대해서 제안한다. 제안한 알고리즘은 칼라 영상에서 콘트라스트와 채도를 함께 향상 시키는 방법이다. 콘트라스트 향상을 위해서 사용하는 적응형 선형 추정 CDF(Cumulative Density Function) 기법은 콘트라스트 향상 시 밝기에 따른 조정이 가능하여 원 영상의 왜곡을 막아준다. 적응형 채도 향상 알고리즘은 채도 향상의 문제점인 Contour Artifact와 Over-Saturation이 발생하지 않는 범위내에서 제도를 향상시킨다. 또한 원 영상의 색상 분포에 따른 선택적 채도 향상 방법을 사용하여 고품질의 영상을 얻을 수 있다. 제안된 알고리즘에 의한 처리 결과와 원 영상의 화질 평가를 위해서 시각적 검증과 히스토그램 편차를 도입하였다.