• Title/Summary/Keyword: Engineering-Model

Search Result 58,189, Processing Time 0.063 seconds

FLEXIBLE OPTIMIZATION MODEL FOR LINEAR SCHEDULING PROBLEMS

  • Shu-Shun Liu;Chang-Jung Wang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.802-807
    • /
    • 2005
  • For linear projects, it has long been known that resource utilization is important in improving work efficiency. However, most existing scheduling techniques cannot satisfy the need for solving such issues. This paper presents an optimization model for solving linear scheduling problems involving resource assignment tasks. The proposed model adopts constraint programming (CP) as the searching algorithm for model formulation, and the proposed model is designed to optimize project total cost. Additionally, the concept of outsourcing resources is introduced here to improve project performance.

  • PDF

A Fast Converging Pulse Coupling Oscillator Synchronicity Model

  • Yu, Niu;d'Auriol, Brian J.;Lee, Sung-Young;Lee, Young-Koo
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.860-861
    • /
    • 2007
  • The Pulse Coupling Oscillator (PCO) is a synchronicity model inspired by nature. However, the PCO model has some limitations. The Fast PCO model is proposed in this paper. It addresses the problem of the phase swing actions in the original PCO model. Benefits are the fast synchronicity speed and associated energy saving.

Dynamic Modeling and Model Reduction for a Large Marine Engine

  • Kim, Chae-Sil;Jung, Jong-Ha;Park, Hyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.520-525
    • /
    • 2003
  • This article provides a dynamic modeling methodology of engines to be accurate with a small number of degrees of freedom for an active vibration control using a top bracing. First. a finite element (FE) model for the engine structure is constructed so that the size of model is as small as possible where the dynamic characteristics of engine are ensured. Second. a technique is studied to obtain the exact mass and stiffness matrices of the FE model. The size of matrices from the FE model is still too large to apply. Finally, a model reduction is. therefore. conducted to make an appropriate dynamic model for designing and simulating a top bracing. In this article, a dynamic model of a large 9 cylinder engine is constructed and reviewed by comparing its natural frequencies and steady state reponses with those of experimental data provided by manufacturer.

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

CREATION OF DIGITAL CITY MODEL FROM A SINGLE KOMPSAT-2 IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.365-367
    • /
    • 2008
  • A digital city model represents a 3D environment of a city with various city object information such as 3D building model, road, and land cover. Usually, at least two satellite images with some image overlap are necessary and a complex satellite-related computation needs to be carried out to create a city model. This is an expensive technique, because it requires many resources and excessive computational cost. The authors propose a methodology to create a digital city model including 3D building model and land cover information from a single high resolution satellite image. The approach consists of image pan-sharpening, shadow recovery, building occlusion restoration, building model extraction, and land cover classification. We create a digital city model using a single KOMPSAT-2 image and review the result.

  • PDF

Modeling of pressuremeter tests to characterize the sands

  • Oztoprak, Sadik;Sargin, Sinan;Uyar, Hidayet K.;Bozbey, Ilknur
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.509-517
    • /
    • 2018
  • This paper proposes a numerical methodology for capturing the complete curve of a pressuremeter test including initial or disturbed parts and loops through a stiffness-based approach adopted in three dimensional finite difference code, FLAC3D. In order to enable this, a new hyperbolic model was used to replace the conventional linear elastic model prior to peak strength of Mohr-Coulomb soil model and update or degradation of shear modulus was considered. Presented modeling approach and implemented constitutive model are impressively successful. It leads to obtain the whole set of parameters for characterizing sands and seems promising for modeling the most of geotechnical structures.

An Example of Engineering Education through SE-based Development of Underwater-robot Kit Model (수중로봇키트 모형의 SE기반 개발을 통한 공학교육 사례)

  • Kim, Hyun-Sik;Kang, Hyung-Joo;Man, Dong-Woo
    • Journal of Engineering Education Research
    • /
    • v.15 no.3
    • /
    • pp.40-46
    • /
    • 2012
  • This paper deals with an example of the engineering education through the SE-based development of an underwater-robot kit model. It has a purpose of establishing the example of a SE-based development by undergraduate through executing the requirement and functional analysis, hardware and software design, manufacturing, test and evaluation for developing the model. In addition, it also has a purpose of establishing the basis of the development of an optimized underwater-robot kit through understanding the weight and buoyancy characteristics and the actuation and propulsion characteristics of the developed model.

A Study on Engineering Education Model for Citizen - Focusing on the Connection Program Between Colleges of Science and Engineering and Science Museums - (시민을 위한 공학교육 모델 개발에 대한 연구 - 이공계 대학과 과학관의 연계 프로그램을 중심으로 -)

  • Han, Hyeontaek;Kim, Seunggyu;Park, Jongrae
    • Journal of Engineering Education Research
    • /
    • v.25 no.3
    • /
    • pp.11-25
    • /
    • 2022
  • The purpose of this study is to propose a strategy model for engineering education for citizen through the connection between colleges of science and engineering and science museums as a way to achieve citizen science. For this model, the role of universities was redefined as social contributions through engineering education from the perspective of knowledge triangle and university entrepreneurship. In addition, the science museum was re-examined as an engineering education platform and selected as an institution that supports the contribution of colleges to society. For practical model development, the connection types of these two institutions were analyzed as case studies and interview to collect opinions from experts in the science museum. In this process, convergence education content development, reinforcement of college-science museum linkage, infrastructure construction, development of college resource utilization plans, and maintenance and expansion of educational programs diversification were derived as components for model development. Based on this, engineering education model for citizen was presented that matches educational programs according to the type of participation of colleges including key factors and considerations.

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF