• Title/Summary/Keyword: Engineering valve

Search Result 2,241, Processing Time 0.035 seconds

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Experimental Study on the Internal Flow of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브 내부유동의 실험적 연구)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2016
  • This paper presents the flow characteristics of a ball valve used for a gas pipeline. Understanding of the internal flow of a ball valve is an important to analyze the physical phenomena of the valve. Present experimental study was performed by IEC 60534-2-3, the international standard for an industrial control valve testing procedure. Pressure measured at upstream and downstream of the valve, flow-rate and gas temperature passing the inside of the gas pipeline were measured with respect to valve opening rates. Throughout the experimental measurement of the ball valve, empirical equation of the pressure drop between the ball valve according to the mass flow rates is successively obtained using a polynomial curve fitting method. In addition, flow coefficient for determining the valve capacity is also analyzed with respect to valve opening rates using the curve fitting method.

The Development of a New Polymer Valve for Artificial Blood Pumps (인공심장 및 심실보조장치용 고분자 인조판막의 개발)

  • Suh, S.W.;Wetering, J.E.v.d.;Park, Y.J.;Park, S.K.;Kim, I.Y.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.104-106
    • /
    • 1993
  • Some cardio-vascular assist systems need more inexpensive artificial heart valves for short-term use. To meet with this need, we have developed a new polymer valve that is very simple to manufacture and of which its dimensions are easy to change, depending on its application. We have tested the hydrodynamic performance of the new polymer valve using a mock circulatory testing system and studied the flow through the valve using high-speed camera combined with image processing techniques. The results show that this valve is superior in its performances to the other valves (Bjork-Shiley mechanical valve and trileaflet polymer valve) and have no stagnation points. We also have tested the hemolytic potential of the valve. The valve is less hemolytic than the Bjork-shiley mechanical valve finally, we have applied this valve to a left ventricular assist device that we are developing.

  • PDF

A study on the performance of the polymer valve in Total Artificial Heart (인공심장용 폴리머 밸브의 역류 특성 분석)

  • Lee, J.J.;Choi, J.H.;Lee, J.H.;Yi, S.W.;Om, K.S.;Ahn, J.M.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.241-242
    • /
    • 1998
  • For the aritificial heart valve, two types of valves-polymer and mechanical valve- are generally used. The polymer valve is used as a new low-cost artificial valve. Among the several properties of the artificial valve, the low-regurgitation property is important because it can provide better cardiac output characteristic. So in this study we analyzed and compared the regurgitation property of the mechanical valve which is generally used nowdays and the polymer valve which was made in our group. As results, the polymer valve showed the better regurgitation property compared to the mechanical valve approximately by 3 times, and increased the cardiac output by 10%.

  • PDF

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

Design Change of E-EGR Valve to Suppress Carbon Deposit (E-EGR Valve 내부 Carbon Deposit 억제를 위한 형상연구)

  • Lee, Hyun-Chang;Lee, Tae-Gon;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4685-4690
    • /
    • 2010
  • New E-EGR valve design to suppress a carbon deposit causing a trouble in the valve by improving gas flow velocity is proposed. With CFD simulations of various shapes of valve disk and rod, the velocities and quantities of flowing fluid are observed. The proposed unique design of having round grooves on the disk head shows the improved performance of flow velocity about 10 % without sacrificing the flow quantity.

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

Valve core shapes analysis on flux through control valves in nuclear power plants

  • Qian, Jin-yuan;Hou, Cong-wei;Mu, Juan;Gao, Zhi-xin;Jin, Zhi-jiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2173-2182
    • /
    • 2020
  • Control valves are widely used to regulate fluid flux in nuclear power plants, and there are more than 1500 control valves in the primary circuit of one nuclear power plant. With their help, the flux can be regulated to a specific level of water or steam to guarantee the energy efficiency and safety of the nuclear power plant. The flux characteristics of the control valve mainly depend on the valve core shape. In order to analyze the effects of valve core shapes on flux characteristics of control valves, this paper focuses on the valve core shapes. To begin with, numerical models of different valve core shapes are established, and results are compared with the ideal flux characteristics curve for the purpose of validation. Meanwhile, the flow fields corresponding to different valve core shapes are investigated. Moreover, relationships between the valve core opening and the outlet flux under different valve core shapes are carried out. The flux characteristics curve and equation are proposed to predict the outlet flux under different valve core openings. This work can benefit the further research of the flux control and the optimization of the valve core for control valves in nuclear power plants.