본논문은 쉴드 TBM 챔버(Chamber) 내 배토처리 효율성 향상을 위한 연구이다. 현재 국내에서는 TBM 공법을 이용한 시공사례가 증가하는 추세이다. TBM 공법 사용의 증가에 따른 디스크 커터(Disc Cutter), 커터 비트(Cutter bit) 및 세그먼트와 같은 TBM 공법의 연구 또한 증가하는 추세를 보인다. 하지만 챔버와 챔버 내 교반 성능에 대한 연구는 미비한 실정이다. 원활한 배토처리와 굴착토의 거동을 개선하기 위하여 챔버 내 효과적인 믹싱 바 배치에 따른 교반 효율 변화에 대한 연구를 수행하였다. 축소모형 실험은 식별의 용이성을 위하여 색이 다른 플라스틱 소재를 사용하여 지반을 조성하였다. 또한 믹싱 바 배치를 상이하게 하여 4가지 Case로 분류하였으며, 입도분포를 단입도와 다입도로 분류하여 총 8가지의 Case로 실험을 진행하였다. 모든 Case의 커터헤드의 회전속도는 5 RPM으로 동일하며, 실험시간 또한 동일한 조건인 1분 30초로 진행하였다. 교반 효율을 확인하기 위하여 각 Case별 상부, 중부(좌 or 우), 하부 위치의 시료를 채취하여 분석하였다. 축소모형실험 결과 실제 사용되는 Case 1과 Case 1-1보다 새로운 배치방법인 Case 4와 Case 4-1의 교반 효율이 증가하는 양상을 보인다. 그에 따라 챔버 내 믹싱 바 배치를 변경하여 교반 효율을 증가시킬 수 있을 것으로 보이며, 교반 효율증가에 따라 공기 절약에 효과적일 것으로 판단된다. 따라서 본 연구는 국내 쉴드 TBM 공법 활용에 있어 큰 지표로써 작용할 것으로 보인다.
대규모로 포집된 이산화탄소를 고갈된 석유·가스 저류층, 대염수층과 같은 심부 지질구조에 주입하는 이산화탄소 지중저장은 대기중 CO2 배출을 저감하기 위한 가장 유망한 기술 중 하나로 연구되고 있다. 이산화탄소 지중저장은 공극수로 포화된 다공성 지질 구조 내부로 초임계상 이산화탄소를 주입함으로써 그 흐름이 공극수와 비혼성 대체를 일으키며 진행된다. 따라서, 공극 구조 내에서 초임계상 이산화탄소와 공극수의 거동과 분포, 그리고 그 결과로 나타나는 대체효율은 두 유체의 상호작용에 의해 좌우되는데, 특히, 점성력과 모세관력은 지질 구조 내부의 환경 조건과 주입 조건에 의해 결정된다. 본 연구에서는 상온상압조건에서 대체유체를 수적법에 적용하여 고온고압조건에서 계면활성제가 초임계상 이산화탄소와 공극수 간 계면장력에 미치는 영향을 산정하였다. 또한, 다공성 매체 내에서의 비혼성 유체의 거동과 분포 양상을 관찰함으로써 계면활성제 농도가 초임계상 이산화탄소의 대체율에 미치는 영향을 분석하였다. 이를 위하여 초임계상 이산화탄소와 공극수의 대체 유체로서 헥산과 탈이온수를 적용하는 마이크로모델 실험을 수행하였으며, 공극 구조 내로의 헥산 주입에 의한 탈이온수의 대체 과정을 정량적으로 분석하기 위하여 이미징 시스템을 통해 두 유체의 비혼성 대체 양상에 관한 이미지를 확득하여 분석하였다. 실험의 결과는 계면활성제의 첨가는 낮은 농도에서도 헥산과 탈이온수 간 계면장력을 급격하게 감소시키며 이후 농도가 증가함에 따라 일정한 값에 접근하는 양상을 보여주었으며, 이러한 변화는 다공성 매체 내부의 공극 규모에서 진입 유체의 흐름 경로에 직접적인 영향을 미침으로써 평형 상태에서 헥산의 대체율에도 동일한 효과를 나타내는 것으로 나타났다. 본 연구의 결과는 다공성 매체 내에서 일어나는 비혼성 유체의 대체에 관한 중요한 정보를 제공하며, 계면활성제의 적용이 이산화탄소 지중저장의 효율을 향상시킬 수 있는 가능성을 보여주었다.
본 연구는 채권시장과 금리시장의 지표를 이용한 외환시장 환율예측 모델을 만드는데 있어 어떤 인공지능 방법론이 가장 적합한지 밝혀내는데 그 목적이 있다. 채권시장의 대표 상품인 국고채와 통안채는 위험회피 상황이 올 때 대규모로 매도되어지고 그런 경우 환율이 상승하는 모습을 자주 보여주었고, 금리시장에서 통화 스왑 (Cross Currency Swap) 가격은 달러 유동성 문제가 생길 때 주로 하락하였으며, 그 움직임은 환율의 상승에 직간접적인 영향을 미쳐온 점 등을 고려하면, 채권시장과 금리시장에서 거래되는 상품의 가격과 움직임은 외환시장에도 직간접적인 영향을 주고 있으며, 세 시장 사이엔 상호 유기적이고 보완적인 관계가 있다고 볼 수 있다. 지금까지 채권시장, 금리시장, 그리고 외환시장 사이의 관계와 연관성을 밝히는 연구는 있어왔으나, 과거 많은 환율예측 연구들이 주로 GDP, 경상수지 흑자/적자, 인플레이션 등 거시적인 지표를 기반으로 한 연구에 집중되어 왔으며, 채권시장과 금리시장 지표를 기반으로 인공지능을 활용하여 외환시장의 환율을 예측하는 적극적인 연구는 아직 진행되지 않았다. 본 연구는 채권시장 지표와 금리시장 지표를 기반으로, 비선형데이터 분석에 적합한 인공신경망(Artificial Neural Network) 모델과, 선형데이터 분석에 적합한 로지스틱 회귀분석 (Logistic regression), 그리고 비선형/선형데이터 분석에 활용 가능한 의사결정나무 (Decision Tree)를 각각 사용하여 환율예측 모델을 만들고 그 수익률을 비교하여 어떤 모델이 가장 외환시장 환율 예측을 하는데 적합한지 알려준다. 또한, 본 연구는 주식시장, 금리시장, 오일시장, 그리고 외환시장 환율 등 비선형적 시계열 데이터 분석에 많이 사용되어진 인공신경망 모델이 채권시장과 금리시장 지표를 기반으로 한 외환시장 환율예측 모델에 가장 적합한 방법론을 제공하고 있다는 것을 증명한다. 채권시장, 금리시장, 그리고 외환시장 간의 단순한 연관성을 밝히는 것을 넘어, 세 시장 간의 거래 신호를 포착하여 적극적인 상관관계를 밝히고 상호 유기적인 움직임을 증명하는 것은 단순히 외환시장 트레이더 들에게 새로운 트레이딩 모델을 제시하는 것뿐만 아니라 금융시장 전체의 효율성을 증가시키는데 기여할 것이라 기대한다.
기후변화와 도시 문제를 고려해 다양한 영역에 걸친 환경계획의 수립과 비교를 위해서는 일관된 기준으로 분류된 지역 규모 수준의 공간자료 구축이 중요하다. 본 연구는 World Urban Database and Access Portal Tools(WUDAPT)에서 제시한 절차를 사용하여 기후 및 환경 연구가 활발히 이루어지고 있는 창원시의 Local Climate Zone(LCZ)를 분류하였다. 또한, 동질적인 기후 특성을 가진 지역일지라도 일부 격자가 다른 기후 특성으로 분류되는 파편화 문제를 개선하기 위해 필터링 기법을 적용하고 필터링 반경에 따른 LCZ 분류 특성을 비교하였다. 위성영상과 지상참조자료, 감독분류 머신러닝 기법인 Random Forest를 활용하여 필터링하지 않은 분류지도와 필터링 반경이 1, 2, 3인 분류지도를 제작하여 정확도를 비교하였다. 또한, 도시지역의 건물 유형에 따른 LCZ 분류특성을 비교하기 위해 GIS를 활용한 분류방법론에서 사용되는 도시형태지수를 제작하여 선행 연구에서 제시한 범위와 비교하였다. 그 결과, 전체 정확도는 필터링 반경이 1일 때 가장 높은 값을 보였다. 도시형태지수를 비교하였을 때 LCZ 유형별 차이는 적었고 대부분 선행연구의 범위를 만족하는 것을 확인하였다. 그러나 연구 결과를 통해 건물의 높이 정보를 반영하지 못하는 한계를 확인하였고, 이를 보완할 수 있는 데이터를 추가하여 분류한다면 더 높은 정확도의 결과물을 획득할 수 있을 것이라 판단된다. 연구 결과는 국내 도시기후 관련 환경 연구분야의 기초 공간자료 제작하기 위한 참고자료로 활용될 수 있을 것이다.
댐은 대규모 토목 구조물로서 안전한 운영을 위해 기초지반의 누수를 차단하고 추가적인 재해를 방지하기 위하여 암반 그라우팅에 대한 체계적인 접근 및 이해가 필요하다. 국내에서는 암반 그라우팅 계획에 있어 현장 기술자의 경험과 유사 사례에 의존하는 경향이 있으며, 보다 신뢰성 있는 그라우팅 계획을 위해 (토목 or 공학적) 이론과 (현장 or 지반) 조사결과를 바탕으로 한 개선방안이 필요한 실정이다. 암반에서 시행하는 그라우팅은 대부분 수리지질 및 불연속면 인자들(RQD, Js, Lu, SPI)에 의해 가장 큰 영향을 받는다. 본 연구에서는 국내 14개 현장에서 실시된 조사 자료를 토대로 수리지질학적 인자(Lu, SPI)와 불연속면 인자(RQD, Js), 그라우트 주입량(grout take) 간의 상관관계를 분석하고 암반 그라우팅 계획의 체계적인 수립 방안을 제시하였다. 연구 인자(RQD, Js, Lu, SPI) 간의 피어슨 상관계수(r)를 분석한 결과, Lu과 SPI의 상관관계(r = 0.92)가 가장 높고, RQD와 Lu(r = -0.75), RQD와 Js(r = 0.69), RQD와 SPI(r = -0.65), Js와 Lu(r = -0.47), SPI와 Js(r = -0.41) 순으로 상관관계가 감소하는 것으로 나타났다. 그라우트 주입량과 연구 인자(RQD, Js, Lu, SPI) 간 상관관계를 분석한 결과, Lu과 SPI는 값이 커질수록 주입량이 증가하는 경향을 보이나 RQD와 Js는 유의한 상관관계가 나타나지 않았다. SPI를 토대로 제안된 그라우팅 계획 수립의 접근 방법은 실제 수행한 차수 그라우팅 시공 자료와 비교‧분석을 통해 검증하였고, 향후 세부 연구 및 실무 수행에 있어 유용한 자료로 활용될 수 있다.
최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.
발파에 의한 지반진동의 크기는 화약류의 종류에 따른 화약의 특성, 장약량, 기폭방법, 전새의 상태와 화약의 장전밀도, 자유면의 수, 폭원과 측간의 거리 및 지질조건 등에 따라 다르지만 지질 및 발파조건이 동일한 경우 특히 측점으로부터 발파지점 까지의 거리와 지발당 최대장약량 (W)간에 깊은 함수관계가 있음이 밝혀졌다. 즉 발파진동식은 $V=K{\cdot}(\frac{D}{W^b})^n{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (1) 여기서 V ; 진동속도, cm /sec D ; 폭원으로부터의 거리, m W ; 지발 장약량, kg K ; 발파진동 상수 b ; 장약지수 R ; 감쇠지수 이 발파진동식에서 b=1/2인 경우 즉 $D{\;}/{\;}\sqrt{W}$를 자승근 환산거리(Root scaled distance), $b=\frac{1}{3}$인 경우 즉 $D{\;}/{\;}\sqrt[3]{W}$를 입방근환산거리(Cube root scaled distance)라 한다. 이 장약 및 감쇠지수와 발파진동 상수를 구하기 위하여 임의거리와 장약량에 대한 진동치를 측정, 중회귀분석(Multiple regressional analysis)에 의해 일반식을 유도하고 Root scaling과 Cube root scaling에 대한 회귀선(regression line)을 구하여 회귀선에 대한 적합도가 높은 쪽을 택하여 비교, 검토하였다. 위 (1)식의 양변에 log를 취하여 linear form(직선형)으로 바꾸어 쓰면 (2)式과 같다. log V=A+BlogD+ClogW ----- (2) 여기서, A=log K B=-n C=bn (2)식은 다시 (3)식으로 표시할 수 있다. $Yi=A+BXi_{1}+CXi_{2}+{\varepsilon}i{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$(3) 여기서, $Xi_{1},{\;}Xi_{2} ;(두 독립변수 logD, logW의 i번째 측정치. Yi ; ($Xi_1,{\;}Xi_2$)에 대한 logV의 측정치 ${\varepsilon}i$ ; error term 이다. (3)식에서 n개의 자료를 (2)식의 회귀평면으로 대표시키기 위해서는 $S={\sum}^n_{i=1}\{Yi-(A+BXi_{1}+CXi_{2})\}\^2$을 최소로하는 A, B, C 값을 구하면 된다. 이 방법을 최소자승법이 라 하며 S를 최소로 하는 A, B, C의 값은 (4)식으로 표시한다. $\frac{{\partial}S}{{\partial}A}=0,{\;}\frac{{\partial}S}{{\partial}B}=0,{\;}\frac{{\partial}S}{{\partial}C}=0{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (4) 위식을 Matrix form으로 간단히 나타내면 식(5)와 같다. [equation omitted] (5) 자료가 많아 계산과정이 복잡해져서 본실험의 정자료들은 전산기를 사용하여 처리하였다. root scaling과 Cube root scaling의 경우 각각 $logV=A+B(logD-\frac{1}{2}W){\;}logV=A+B(logD-\frac{1}{3}W){\;}\}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (6) 으로 (2)식의 특별한 형태이며 log-log 좌표에서 직선으로 표시되고 이때 A는 절편, B는 기울기를 나타낸다. $\bullet$ 측정치의 검토 본 자료의 특성을 비교, 검토하기 위하여 지금까지 발표된 국내의 몇몇 자료를 보면 다음과 같다. 물론, 장약량, 폭원으로 부터의 거리등이 상이하지만 대체적인 경향성을 추정하는데 참고할수 있을 것이다. 금반 총실측자료는 총 88개이지만 환산거리(5.D)와 진동속도의 크기와의 관계에서 차이를 보이고 있어 편선상 폭원과 측점지점간의 거리에 따라 l00m말만인 A지역과 l00m이상인B지역으로 구분하였다. 한편 A지역의 자료 56개중, 상하로 편차가 큰 19개를 제외한 37개자료와 B지역의 29개중 2개를 낙외한 27개(88개 자료중 거리표시가 안된 12월 1일의 자료3개는 원래부터 제외)의 자료를 computer로 처리하여 얻은 발파진동식은 다음과 같다. $V=41(D{\;}/{\;}\sqrt[3]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (7) (-100m)(R=0.69) $V=124(D{\;}/{\;}\sqrt[3]{W})^{-1.66){\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (8) (+100m)(R=0.782) 식(7) 및 (8)에서 R은 구한 직선식의 적합도를 나타내는 상관계수로 R=1인때는 모든 측정자료가 하나의 직선상에 표시됨을 의미하며 그 값이 낮을수록 자료가 분산됨을 뜻한다. 본 보고에서는 상관계수가 자승근거리때 보다는 입방근일때가 더 높기 때문에 발파진동식을 입방근($D{\;}/{\;}\sqrt[3]{W}$)으로 표시하였다. 특히 A지역에서는 R=0.69인데 비하여 폭원과 측점지점간의 거리가 l00m 이상으로 A지역보다 멀리 떨어진 B지역에서는 R=0.782로 비교적 높은 값을 보이는 것은 진동성분중 고주파성분의 상당량이 감쇠를 당하기 때문으로 생각된다.
본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.
QFD(Quality Function Deployment: 품질기능 전개도)는 상품개발과정에서 소비자의 요구가 손실되지 않고 최종제품의 생산에 반영되고 시장에 투입되도록 고안된 상품개발 기술의 일종이다. 본 연구에서는 착용감이 우수한 brassiere를 개발하는 과정에서 필요한 모든 정보를 획득하기 위하여 소비자가 요구하는 제품속성과 이 제품속성을 제품 기능에 반영할 수 있는 구체적인 연구 방법론을 제시하기 위해 QFD를 이용하여 그 효율성과 타당성을 검토해 보고자 하였다. Brassiere 착용쾌적성에 대한 소비자 요구 조사를 위해 30-40대의 주부 100명에게 설문조사를 실시하였다. 소비자 요구들 중 중요 항목을 선정하기 위해 중요도 순위 조사를 5점 척도로 조사한 후, 소비자 요구 항목들은 기술적 언어로 전환되었다. 제품에 대한 소비자의 주관적 평가인 소비자 경쟁 평가를 위해 10가지 시판 brassiere에 대한 착용실험이 $28{\pm}1^{\circ}C,\;65{\pm}3\%$ RH로 조절되는 인공기후실에서 실시되었다. 소비자 경쟁 평가치는 기술적 경쟁 평가의 물리적평가치와 비교함으로써, 적절한 기술적 언어를 발굴해 냈는가를 검증할 수 있었다. 결과적으로 쾌적성 있는 중년 여성의 brassiere를 개발하기 위해 도출된 소비자 요구는 종합적 착용 쾌적감, 맞음성-체형보정성, 움직임에 의한 브래지어의 위치 이동성, 압박감, 생리적 특성, 심미적 특성, 브래지어의 어깨끈 관련 특성 등 7가지로 나타났다. 이를 제품에 반영하기 위한 기술적 언어로는 3D측정 Data,소재의 물리적 특성, 심미적 특성, 생리적 측정치, 패턴, 압력 측정치 등으로 도출되었다.형 집단이 다른 두집단보다 더 활발한 불평행동을 취하는 것으로 나타났다. 따라서, 정보지향형과 브랜드지향형 집단의 경우에는 서비스회복의 만족도론 높혀주는데 주력하고, 가격지향형 집단의 경우에는 불평행동이 보다 적극적으로 취해질수 있도록 유도하는 마케팅 전략을 서비스 회복 전략과 함께 구사하는 것이 보다 효과적 일 것이라 생각된다.TEX>$53\%$의 상동성이 각각 존재하는 것으로 확인하였다.)을 가지고 있음이 확인되었다. 사람에 직접적인 유해성을 가지고 있는 지 확인하기 위해 사람 방광 유래의 T-24세포와 장내 표피 유래의 Caco-2세포에 대한 부착능을 시험하였을 때, 16균주$(42.1\%)$가 T-24방광 세포에, 그리고 17균주$(44.7\%)$가 Caco-2장세포에 대해 강한 부착능을 나타내었다. 특히 11균주$(28.9\%)$는 두 세포 모두에 강한 부착능을 가지고 있었다. Filter mating method를 수행하여 이들 균주들의 독소 생산 유전자와 항생제 내성 유전자가 사람에서 분리된 균주로 전달되는 것을 확인할 수 있었다. 본 실험의 결과는 설사 중상을 나타내는 돼지로부터 분리된 용혈성 E. coli의 독성과 세포 부착능력, 그리고 항생제 내성간의 상호 연관성을 보여주지 않았으나 동물 분리 세균의 항생제 내성과 독소 생산 능력이 유전자 전달을 통해서 뿐만 아니라 세균의 직접 접촉에 의해서도 인체로 전달될 수 있는 것을 보여주는 것이다.다. 본 연구를 토대로 장시간의 체외순환에서는 신장기능을 대표하는 수치들에도 영향을 미칠 수 있으리라 예상되며, 신장 이외에 다른 주요 장기에 미치는 영향에 대한 연구를 더
국내(國內)의 여러 열수금속광상(熱水金屬鑛床)에서 채취(採取)한 섬아연석(閃亞鉛石)의 조성(組成) 변화(變化)를 광산(鑛山) 및 국지적(局地的) 단위(單位), 그리고 광역적(廣城的) 단위(單位)로 조사(調査)하였다. 섬아연석(閃亞鉛石)의 Fe, Mn, Cd 함량(含量)은 electron probe microanalyzer(EPMA) 에 의한 부분분석(部分分析) 방법(方法)으로 측정(測定)하였다. 제1연화광산(第一蓮花鑛山)의 월암광산(月岩鑛山)에서 심도별(深度別)(0m에서 -420m level까지)로 채취(採取)한 섬아연석(閃亞鉛石)의 경우 Fe, Cd 함량(含量)은 심도(深度)에 따라 큰 변화(變化)가 없는 반면(反面) Mn 함량(含量) 변화(變化)는 현저하였다. 반심성암(半深成岩) 및 분출암(噴出岩)의 활동(活動)과 성인적(成困的)으로 관련(關聯)된 Zn-Pb 광상(鑛床)의 경우 섬아연석(閃亞鉛石)은 그 Mn 함량(含量)이 높고 (MnS 1.0 mole% 이상(以上)) Cd 함량(含量)이 낮은 (CdS 0.5 mole% 이하(以下)) 특징(特徵)을 보인다. 비교적(比較的) Mn함량(含量)이 높은 섬아연석(閃亞鉛石)은 Fe함량(含量)도 높다. 일반적(一般的)으로 각(各) 광상별(鑛床別)로 보면 Mn에 비(比)해 Cd 함량변화(含量變化)는 일정(一定)하다. 대부분(大部分)의 W광상(鑛床)과 일부(一部) Au-Ag광상(鑛床)에서 산출(産出)된 섬아연석(閃亞鉛石)의 경우 Cd함량(含量)이 현저하게 높으나, 대부분(大部分)의 base metal 광상(鑛床) 및 Fe광상(鑛床)에서는 Cd함량(含量)이 낮다. 성인적(成因的)으로 심성암(深成岩)의 활동(活動)과 관련(關聯)된 금속광상(金屬鑛床)에서 산출(産出)되는 섬아연석(閃亞鉛石)의 Cd 함량(含量) 변화(變化)는 다양한 경향을 나타낸다. 섬아연석중(閃亞鉛石中)의 Cd 근원(根源)은 magma성(性) 내지(乃至)는 후(後) magma성(性)과정중(過程中) 원래(原來)부터 존재(存在)하던 유용(有用) 함량(含量)에 기인(起因)된다고 판단(判斷)된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.