• Title/Summary/Keyword: Engineering criticality analysis

Search Result 102, Processing Time 0.025 seconds

A Framework for Detecting Data Races in Weapon Software (무기체계 소프트웨어의 자료경합을 탐지하기 위한 프레임워크)

  • Oh, Jin-Woo;Choi, Eu-Teum;Jun, Yong-Kee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.305-312
    • /
    • 2018
  • Software has been used to develop many functions of the modern weapon systems which has a high mission criticality. Weapon system software must consider multi-threaded processing to satisfy growing performance requirement. However, developing multi-threaded programs are difficult because of concurrency faults, such as unintended data races. Especially, it is important to prepare analysis for debugging the data races, because the weapon system software may cause personal injury. In this paper, we present an efficient framework of analysis, called ConDeWS, which is designed to determine the scope of dynamic analysis through using the result of static analysis and fault analysis. As a result of applying the implemented framework to the target software, we have detected unintended data races that were not detected in the static analysis.

Reliability Analysis and Reliability Modeling for KSLV-I Upper Stage (KSLV-I 상단부에 대한 신뢰성 분석과 신뢰도 모델링)

  • Shin, Myoung-Ho;Cho, Sang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • This paper shows the results of failure mode analysis and the system-level reliability model for the flight test of KSLV-I upper stage. First, the critical 14 functions of KSLV-I upper stage are identified and the mission profile of the flight test is analyzed. Then, based on the functional analysis and the mission profile analysis, we construct a hierarchical structure of failure modes and a system-level reliability model for the flight test of KSLV-I upper stage.

  • PDF

Fatigue Reliability Analysis Model for GFRP Composite Structures (GFRP 복합구조의 피로신뢰성 해석모형에 관한 연구)

  • 조효남;신재철;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.29-32
    • /
    • 1991
  • It is well known that the fatigue damage process in composite materials is very complicated due to complex failure mechanisms that comprise debounding, matrix cracking, delamination and fiber splitting of laminates. Therefore, the residual strength, instead of a single dominant crack length, is chosen to describe the criticality of the damage accumulated in the sublaminate. In this study, two models for residual strength degradation established by Yang-Liu and Tanimoto-Ishikawa that are capable of predicting the statistical distribution of both fatigue life and residual strength have been investigated and compared. Statistical methodologies for fatigue life prediction of composite materials have frequently been adopted. However, these are usually based on a simplified probabilistic approach considering only the variation of fatigue test data. The main object of this work is to propose a fatigue reliability analysis model which accounts for the effect of all sources of variation such as fabrication and workmanship, error in the fatigue model, load itself, etc. The proposed model is examined using the previous experimental data of GFRP and it is shown that it can be practically applied for fatigue problems in composite materials.

  • PDF

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide

  • Alzamly, Mohamed A.;Aziz, Moustafa;Badawi, Alya A.;Gabal, Hanaa Abou;Gadallah, Abdel Rraouf A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.674-680
    • /
    • 2020
  • We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found.

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

Multigroup Calculations for TRIGA-type Reactor Analysis

  • Lee, Jong-Tai;Kim, Jung-Do;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.87-92
    • /
    • 1978
  • Multigroup constant calculation system for TRIGA-type reactor analysis was provided. Calculations for initial criticality, temperature coefficient, flux and power distributions of TRICA-Mark III reactor were carried out by using diffusion code CITATION. And some of results were compared with the values of start-up experiments and design values. It could be confirmed that the prepared computation system is very useful for TRIGA-type reactor analysis.

  • PDF

A Method for Evaluating Product Degradation Status Using Product Usage Data (제품 사용데이터를 활용한 제품 열화상태 평가 방안에 대한 연구)

  • Shin, Jongho;Jun, Hongbae;Cattaneo, Cedric;Kiritsis, Dimitris;Xirouchakis, Paul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.36-48
    • /
    • 2013
  • In general, the product is used under several circumstances including environmental and usage conditions. According to the circumstances, the product has various performance degradation processes. In order to optimize the lifecycle of product usage, it is important to observe the degradation process and make suitable decisions on product operations. However, there are not much research works in evaluating the degree of product degradation based on product usage data. Recently, due to emerging ICT (Information and Communication Technology) technologies, it becomes possible to get the product usage data. Based on the gathered data, it is possible to analyze the degree of product degradation. The analysis of product usage data can improve product use and product design with advanced decisions. To this end, this study addresses one approach based on FMEA/FMECA method, called PDMCA (Performance, Degradation Modes and Criticality Analysis) for evaluating product degradation status and making suitable decisions.

A Study on Failure Mode and Effect Analysis of Hydrogen Fueling Nozzle Used in Hydrogen Station (수소충전소용 수소 충전 노즐의 고장 유형 및 영향분석 )

  • JUHYEON KIM;GAERYUNG CHO;SANGWON JI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.682-688
    • /
    • 2023
  • In this paper, analyzes the type of failure and its effect on the hydrogen fueling nozzle used in hydrogen station. Failure of hydrogen fueling nozzle was analyzed using a qualitative risk assessment method, failure mode and effect analysis. The failure data of hydrogen fueling nozzles installed in domestic hydrogen stations are collected, and the failure types are classified, checked the main components causing the failure. Criticality analysis was derived based on frequency and severity depending on the failure mode performed. A quality function is developed by a performance test evaluation item of the hydrogen fueling nozzle, and the priority order of design characteristics is selected. Through the analysis results, the elements to improve the main components for enhancing the quality and maintenance of the hydrogen fueling nozzle were confirmed.

저궤도 상용위성의 시스템 수준 FMECA

  • Lee, Chang-Ho;Cho, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of FMECA is to identify parts and design whose damage can effect the mission performance and to improve the spacecraft design using these data. In consequence of this analysis, each failure mode which can be happened during operation and manufacturing period is identified, and their effects on mission performance are reviewed. In this technical report, the FMECA procedures and results for the satellite which is now under development are showed.

  • PDF