• 제목/요약/키워드: Engineering criticality analysis

검색결과 102건 처리시간 0.029초

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

퍼지이론을 이용한 전문가 의견 도출법과 FMECA 전문가시스템 (Expert Opinion Elicitation and Expert System for FMECA using Fuzzy Theory)

  • 김동진;변융태;김형철;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.261-262
    • /
    • 2008
  • Failure Mode Effects and Criticality Analysis (FMECA) evaluates criticality and severity of each failure mode. Generally, those indices are determined subjectively by experts and operators. However, this process has no choice but to include uncertainty. In this paper, a method for eliciting expert opinions considering its uncertainty is proposed to evaluate the criticality and severity. In addition, a fuzzy expert system is constructed to determine the crisp value of risk level for each failure mode. The results are worth considering while deciding the proper policies for each component of the system.

  • PDF

ECA 기법을 이용한 해양구조물의 결함 평가 (Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis)

  • 강범준;김유일;류철호;기혁근;박성건;오영태
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.

Analysis of the Nuclear Subcriticality for the High Density Spent Fuel Storage at PWR Plants

  • Koh, Duck-Joon;Yang, Ho-Yeon;Kim, Byung-Tae;Jo, Chang-Keun;Hokyu Ryu;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.470-475
    • /
    • 1998
  • The marginal nuclear criticality analysis for the high density spent fuel storage at a PWR plant was carried out by using the HELIOS and CASMO-3 codes. More than 20 % of the calculated reactivity saving effect is observed in this analysis. This mainly comes from the adoption of some important fission products and B-10 in the criticality analysis. By taking burnup and boron credits, the high capacity of the spent fuel storage rack can be more fully utilized, reducing the space of storage. Larger storage for a given inventory of spent fuel should result in remarkable cost savings and mort importantly reduce the risks to the public and occupational workers.

  • PDF

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

A STUDY OF FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS PROCESS FOR THE RAILROAD SYSTEM

  • Kim, Jae-Hoon;Jeong, Hyun-Yong;Cha, Dong-Wook;Park, Kwon-Shik;Park, Jun-Seo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1394-1400
    • /
    • 2008
  • This study investigates the Failure Modes, Effects and Criticality Analysis (FMECA) Method for the railroad vehicle. Recently, RAMS (Reliability, Availability, Maintainability and Safety) is one of the most important issues in the railroad industry. FMECA is prerequisite for the RAMS Analysis, and it is a procedure to identify the potential failure modes and their effects and to reduce or mitigate the critical effects on the system. FMECA is used in various industries and it is specialized in each industry. For instance, MIL-1629a and SAE-J1739 are specialized FMECA method for Military industry and Automotive industry, respectively. Although the railroad industry requires the high reliability system, it does not have a specialized FMECA yet. Thus, in this paper, an FMECA method specialized to the railroad vehicle was proposed through analyses and comparison of the MIL-1629a, SAE-J1739 and IEC-60812 standards.

  • PDF

수자원 계획수립을 위한 다기준의사결정기법의 적용: 2. 가중치와 평가치에 대한 민감도 분석 (Application of Multi-criteria Decision Making Techniques for Water Resources Planning: 2. Sensitivity Analysis of Weighting and Performance Values)

  • 정은성
    • 한국수자원학회논문집
    • /
    • 제45권4호
    • /
    • pp.383-391
    • /
    • 2012
  • 본 연구는 다기준 의사결정 문제에서 항상 발생하는 가중치와 대안들의 평가치에 대한 불확실성을 최소화하기 위해 민감도 분석을 수행하는 절차를 제시하였다. 제기되는 가중치에 대한 불확실성을 극복하기 위해 일반적으로 순위가 뒤바뀔 수 있는 가장 민감한 평가기준의 결정과 대안의 효과 측정자료의 결정이 있다. 본 연구는 유량확보와 수질개선을 위한 수자원 계획수립을 위해가중합계법을 이용한 문제에 두 경우의 민감도분석을 모두수행하였다. 이 과정에서 결정계수와 민감도 계수를 산정하여 이용하였다. 본 연구에서 제시한 민감도 분석 과정은 향후 수자원 계획 수립에 폭넓게 활용될 수 있다.

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.

Fuzzy Linear Opinion Pool를 이용한 Five-Phase 전문가 시스템 (FMECA Expert System Using Fuzzy linear Opinion Pool)

  • 변융태;김동진;김진오
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.148-153
    • /
    • 2009
  • FMECA는 전력설비의 기능, 고장 모드, 고장 원인 및 고장의 파급 효과 등을 분석하고 각 고장 모드가 시스템의 기능 유지에 영향을 미치는 정도인 심각도(Severity)와 고장 발생의 빈도의 정도인 치명도(Criticality)를 평가하여 치명도 매트릭스(Criticality Matrix)를 구성함으로써 높은 위험성을 갖는 고장 모드를 판별하고 효과적인 시스템 구성을 위한 참고 자료를 제공한다[4-5]. 대부분의 경우, 고장 모드의 두 지수는 미리 정해진 기준에 따라 전문가들의 정성적인 평가에 의해 결정된다. 따라서 본 논문에서는 두 지수들에 대한 다양한 전문가의 의견을 종합하여 결론을 도출하기 위한 방법론으로 기존의 Linear Opinion Pool에 퍼지이론을 결합하는 방식을 제안하였다. 또한 기존의 치명도 매트릭스 방식으로 위험도를 판별하던 방식의 한계를 인식하고 운영자의 관심에 따라 두 지수를 종합적으로 평가하기 위해 퍼지 FMECA 전문가 시스템을 구성하였다.[7-8]. 사례연구에서는 대표적인 전력 설비에 대한 적용 예를 나타내었다.

시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구 (Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump)

  • ;이용관;정재천
    • 시스템엔지니어링학술지
    • /
    • 제9권1호
    • /
    • pp.65-84
    • /
    • 2013
  • This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.