• Title/Summary/Keyword: Engineering analyses

Search Result 8,274, Processing Time 0.027 seconds

The soil effect on the seismic behaviour of reinforced concrete buildings

  • Yon, Burak;Calayir, Yusuf
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.133-152
    • /
    • 2015
  • This paper investigates the soil effect on seismic behaviour of reinforced concrete (RC) buildings by using the spread plastic hinge model which includes material and geometric nonlinearity of the structural members. Therefore, typical reinforced concrete frame buildings are selected and nonlinear dynamic time history analyses and pushover analyses are performed. Three earthquake acceleration records are selected for nonlinear dynamic time history analyses. These records are adjusted to be compatible with the design spectrum defined in Turkish Seismic Code. Interstory drifts and damages of selected buildings are compared according to local soil classes. Also, capacity curves of these buildings are compared with maximum responses obtained from nonlinear dynamic time history analyses. The results show that, soil class influences the seismic behaviour of reinforced concrete buildings, significantly.

Inelastic buckling of tapered members with accumulated strain

  • Kim, M.C.;Lee, G.C.;Chang, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.611-622
    • /
    • 1995
  • This paper is concerned with inelastic load carrying capacity of tapered steel members with or without accumulated plastic strains resulted from previous loading histories. A finite element program is developed using stiffness matrices of tapered members and is applicable for analyses with material and geometric nonlinearity. Results of analyses are compared with other available solutions and with experimental results.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

FE analyses and prediction of bursting forces in post-tensioned anchorage zone

  • Kim, Joung Rae;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.75-85
    • /
    • 2018
  • To improve the design equation for the evaluation of the bursting force in the post-tensioned anchorage zone, this paper presents the analyses and design of the post-tensioned (PT) anchorage zone on the basis of three dimensional (3D) finite element (FE) analyses. The structural behavior was investigated through linear elastic finite element analyses upon consideration of the change in design parameters such as the bearing plate size, the eccentricity, and the tendon inclination. Moreover, consideration of the duct hole, which causes an increase of the bursting stress with a change in its distribution along the anchorage zone as well, is emphasized. Since that an exact prediction of the bursting force is the primary interest in design practice, additional parametric analyses are carried out to evaluate the relative contribution of all design parameters in determining the bursting force, and a comparison with the design guidelines mentioned in AASHTO-LRFD has been provided. Finally, an improved design guideline that takes into account the influence by the duct hole is suggested.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.