• Title/Summary/Keyword: Engineering analyses

Search Result 8,274, Processing Time 0.034 seconds

Study on Estimation of Equivalent Circle of Plastic Board Drain (PBD의 유효등가경 평가에 관한 연구)

  • You, Seung-Kyong;Lee, Choong-Ho;Yoon, Gil-Lim;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.490-496
    • /
    • 2006
  • In order to design accurately plastic board drain (PBB) method, it is important to determine the equivalent circle of PBD. In this paper, a series of numerical analyses on soft ground improved by PBD were carried out, in order to investigate the resonable equivalent circle of PBD considering consolidation behavior of improved soft ground by PBD. The applicability of numerical analyses, in which an elasto-viscoplastic three-dimensional consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of soft ground improved by PBD. And, through the results of the numerical analyses, consolidation behaviors of soft ground during consolidation was elucidated, together with the equivalent circle of PBD considering consolidation behaviors.

  • PDF

Local joint flexibility equations for Y-T and K-type tubular joints

  • Asgarian, Behrouz;Mokarram, Vahid;Alanjari, Pejman
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-167
    • /
    • 2014
  • It is common that analyses of offshore platforms being carried out with the assumption of rigid tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms considering local joint flexibility leads to more accurate results. This paper presents an extensive finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas are obtained by non-linear regression analyses on the database. The proposed equations are verified against existing analytical and experimental formulations. The equations can be used reliably in global analyses of offshore structures to account for the LJF effects on overall behavior of the structure.

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

Transient Flow Analyses of the Intake and Compression Processes In a Direct Injection Engine (직분식 디젤엔진의 흡입$\cdot$압축 행정시 엔진 실린더 내의 비정상 유동 해석)

  • Joo K. J.;Park H. K.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • The transient flow fields in a direct injection engine was analyzed by using the STAR-CD CFD code doting the intake/compression processes. The analyses were focused on the computation grid generation by using the IC3M code which is a pre-developed and especially well adapted for the analyses of internal combustion engine. The results showed that the used grid generation technique was well suited for the flow analyses on any internal combustion engine.

A Case Study on Verification of Inverse Calculation of Dynamic Properties of Rockfill Zone using Microearthquake Records (댐 계측지진 활용 사력죤 물성 역산법 검증 사례 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.759-764
    • /
    • 2010
  • In this study, from the comparison of the results obtained by 3 dimensional dynamic analyses using the inverse-calculated properties and those by calculating using the real earthquake records, the inverse calculation method for obtaining the dynamic properties of rockfill materials was verified. The fundamental frequency of the dam was determined by analyzing the response spectrum of observed records. By repeated dynamic analyses for various shear moduli of rockfill material, the shear moduli in the rockfill zone that satisfy the relationship between the fundamental frequency obtained by analysis of the observed records and that by numerical analyses were determined. Using the determined shear moduli, the 3 dimensional dynamic analyses for the dam were carried out and the result were compared with the real response characteristics on the crest of the dam.

  • PDF

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

Reactor Noise Analyses in Yonggwang 3&4 Nuclear Power Plants (영광 3&4 호기의 원자로잡음신호 해석)

  • Park, Jin-Ho;Ryu, Jeong-Soo;Sim, Woo-Gun;Kim, Tae-Ryong;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.679-686
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector signals have been performed to monitor the vibration modes of reactor internals such as fuel assembly and Core Support Barrel in Yonggwang 3&4 Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. It has been found that the first vibration mode frequency of the fuel assembly was around 2.5 Hz, the beam and shell mode frequencies of CSB(Core Support Barrel) 8 Hz and 14.5 Hz, respectively. Also the analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals.

  • PDF

A Study on Evaluation of Vibration Reduction Effect of Concrete tracks (콘크리트 궤도 유형별 진동성능평가에 대한 연구)

  • Yang, Shin-Chu;Kim, Eun;Kang, Yun-Suk;Um, Ju-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.911-916
    • /
    • 2002
  • One of important roles of concrete track is to reduce vibration transmitting to subgrade. In this paper, a numerical method for evaluating the effects of vibration reduction of concrete track is presented. Using the method, high frequency dynamic analyses and track-tunnel-soil interaction analyses are carried out for three types of concrete track in order to investigate the vibration reduction effects compared with normal ballast track.

  • PDF

Effects of Soil Nonlinearity Characteristics on the Seismic Response of KNGRStructures (지반의 비선형 특성이 차세대원전 구조물의 지진응답에 미치는 영향)

  • 장영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.137-146
    • /
    • 1999
  • The SSI(Soil-Structure Interaction) analyses are being performed for the KNGR(Korean Next Generation Reactor) design because the KNGR is developed as a standard nuclear power plant concept enveloping various soil conditions. the SASSI program which adopts the flexible volume method is used for the SSI analyses. The soil curves used in the three dimensional SSI analyses of KNGR Nuclear Island(NI) structures are based on the upper bound shear modulus curve and lower bound damping degradation on SSI response the average shear modulus curve with average damping curve was used for two soil cases. This study presents the results of the variances by using different soil nonlinearity parameters based on the paametric SSI analyses. The results include the maximum member forces(shear and axial force) at the base of the NI structures and the 5% damping Floor Response Spectra (FRS) at some representative locations at the top of the NI superstructures. They are also compared together with the enveloped SSI results for eight soil cases and fixed-base analysis for rock case by using two control motions.

  • PDF