• 제목/요약/키워드: Engineering analyses

검색결과 8,227건 처리시간 0.034초

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교 (Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio)

  • 유승경;조성민;김지용;심민보
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

Optimal Shape and Boil-Off Gas Generation of Fuel Tank for LNG Fueled Tugboat

  • Kim, Jung-Woog;Jeong, Jin-yeong;Chang, Dae-Jun
    • 한국해양공학회지
    • /
    • 제34권1호
    • /
    • pp.19-25
    • /
    • 2020
  • This paper proposes the optimal shape of an LNG fuel tank with a lattice pressure vessel (LPV) design for a tugboat. The LPV is a Type C tank with a design philosophy of "design by analysis," which facilitates greater variability of shape compared with other traditional Type C tanks. Further, compared with conventional cylindrical fuel tanks, the LPV provides better volumetric efficiency. Considering the shape of a fuel tank room, a trapezoidal shape of the LPV is concluded as the most optimal design. This study performs two major analyses of the LPV: structural and heat transfer analyses. First, a design procedure of the LPV based on structural analyses is elaborated. The finite element method is used for the analyses. Furthermore, the results guarantee that the maximum stresses by applied loads do not exceed an allowable stress limitation. Second, the heat transfer analysis of the LPV is conducted. LNG boil-off gas generation is analyzed based on various insulation materials and the degree of acuum.

Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

  • Bak, Sera;Yoo, Jaehoon;Song, Chang Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.263-276
    • /
    • 2013
  • Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가 (Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake)

  • 이도형;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate

  • Lee, Dongkyu;Park, Sungsoo;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.469-488
    • /
    • 2008
  • Finite element methods have often been used for structural analyses of various mechanical problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties in the initial data such as structural parameters and loading conditions may result in uncertainties in the structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable structural analysis results. The typical finite element method may not properly represent discrete systems when using uncertain data, since all input data of material properties and applied loads are defined by nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for evaluating the uncertainties of the initial data in structural analyses. According to this method, the element stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and interval change functions are devised. Numerical uncertainties in the initial data are described as a tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that structural safety can be included in the design. Numerical applications of truss and frame structures demonstrate the efficiency of the present method with respect to numerical analyses of structural uncertainties.

Random vibration-based investigation of required separation gap between adjacent buildings

  • Atefeh Soleymani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.285-297
    • /
    • 2024
  • Due to the imbalanced vibration of the adjacent buildings, the pounding phenomenon occurs as a result of an insufficient gap between them. Providing enough gap between adjacent structures is the most efficient approach to preventing the pounding effect. This paper calculated the required separation gaps between adjacent buildings, including two, four, eight, twelve and twenty stories steel moment-resisting frames, and investigated their related influencing parameters such as time periods, damping ratios, and the number of bays. The linear and nonlinear dynamic time-history analyses under real seismic event records were conducted to calculate the required separation gaps by obtaining relative displacement and velocity functions of two adjacent frames. The results showed that the required separation gap increased when the time periods of adjacent frames were not the same. The resulting separation gaps values of linear and nonlinear analyses were similar only for two and four stories frames. In other frames, the resulting separation gap values of linear analyses surpassed the corresponding nonlinear analyses. Although increasing the damping ratios in adjacent frames causes a decrease in the required separation gaps, the number of bays had no significant effect on them.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 구조 및 진동해석 (Structural and Vibration Analysis of Large Windturbine Rotor Considering the Rotational and Aero Load Effect)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.270-275
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are full? used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

  • PDF

전자레인지 포장품의 클램핑 해석 및 설계 (Clamping Analysis and Design of a Package of a Microwave Oven)

  • 이부윤;손병삼
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.113-121
    • /
    • 2009
  • Behavior of a package of a microwave oven under the clamping condition is evaluated by tests and the finite element analyses. PAM-CRASH software is used for the finite element analyses. Results of the analyses are compared with those of the tests and accuracy is shown to be favorable. Under the clamping condition of the original design, severe deformation occurs and an improved design of the outer case and upper EPS(Expandable Poly Styrene) is proposed to reduce it. Face beads of the outer case are introduced and shape of the upper EPS is modified to reduce the deformation resulting from the clamping load. The improved design model is analyzed and its deformation is shown to be satisfactory. A prototype is produced according to the improved design and tests are performed. Results of the clamping test of the prototype show that the plastic deformation is removed totally.