• Title/Summary/Keyword: Engineering Properties of concrete

Search Result 2,663, Processing Time 0.032 seconds

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach

  • Sonebi, Mohammed;Abdalqader, Ahmed;Fayyad, Tahreer;Amaziane, Sofiane;El-Khatib, Jamal
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.347-360
    • /
    • 2022
  • Fiber-reinforced cementitious composites (FRCC) have emerged as a response to the calls for strong, ductile and sustainable concrete mixes. FRCC has shown outstanding mechanical properties and ductility where special fibres are used in the mixes to give it the strength and the ability to exhibit strain hardening. With the possibility of designing the FRCC mixes to include sustainable constituents and by-products materials such as fly ash, FRCC started to emerge as a green alternative as well. To be able to design mixes that achieve these conflicting properties in concrete, there is a need to understand the composition effect on FRCC and optimize these compositions. Therefore, this paper aims to investigate the influence of FRCC compositions on the properties of fresh and hardened of FRCC and then to optimize these mix compositions using factorial design approach. Three factors, water-to-binder ratio (w/b), mineral admixtures (total of fly ash and metakaolin by cement content (MAR)), and metakaolin content (MK), were investigated to determine their effects on the properties of fresh and hardened FRCC. The results show the importance of combining both FA and MK in obtaining a satisfactory fresh and mechanical properties of FRCC. Models were suggested to elucidate the role of the studied factors and a method for optimization was proposed.

Experimental and SEM Analyses of Ground Fly Ash in Concrete

  • Brueggen, Beth;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.51-54
    • /
    • 2010
  • Fly ash is used in concrete to improve the fresh and hardened properties of concrete, including workability, initial hydration temperature, ultimate strength and durability. A primary limitation on the use of large quantities of fly ash in blended cement concrete is its slow rate of strength gain. Prior studies investigated the effects of grinding fly ash and fly ash fineness on the performance of concrete containing fly ash. This study aims to discover the sources of those effects, to verify the compressive strength behavior of concrete made with raw and processed Class C fly ash, and to investigate the properties of fly ash particles at the microscopic level. Concrete cylinder test results indicate that grinding fly ash can significantly benefit the early age strength as well as the ultimate strength of concrete with ground fly ash. Therefore, it is demonstrated that grinding fly ash increases its reactivity. Scanning Electron Microscopy was then used to investigate the physical effects of the grinding process on the fly ash particles in order to identify the mechanism by which grinding leads to improved concrete properties.

Interaction of magnetic water and polypropylene fiber on fresh and hardened properties of concrete

  • Ansari, Mokhtar;Safiey, Amir
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.307-318
    • /
    • 2021
  • Utilizing fibers is an effective way to avoid the brittle behavior of the conventional concrete and can enhance its ductility. In particular, propylene fibers can improve concrete properties, including energy absorption, physical and mechanical properties, controlling shrinkage cracks. The increase of fiber density leads to an increase of the overlapping surface of the fiber of concrete and, in turn, a decrease of cracks developed in the concrete. However, the workability of fiber reinforced concrete tends to be lower than the conventional concrete owing mainly to the hairline thickness and excessive concentration of fibers. The low slump of concrete impedes the construction of reinforced concrete members. In this research, we study if the utilization of magnetic water can alleviate the workability issue of young fiber reinforced concrete. To this end, the compressive and flexural strength of four types of concrete (conventional concrete, fiber reinforced concrete, magnetic concrete, magnetic fiber-reinforced concrete) is studied and compared at three different ages of 7, 14, and 28 days. In order to study the influence of the fiber density and length, a study on specimens with three different fiber density (1, 2, 5 kg of fiber in each cubic meter of concrete) and fiber length (6, 12, 18 mm) is undertaken. The result shows the magnetic fiber concrete can result in an increase of the flexural and compressive strength of concrete at higher ages.

Influence of Rheological Properties of Lightweight Foamed Concrete on Preventing Foam Collapse (경량 기포 콘크리트의 레올로지 특성이 소포억제에 미치는 영향)

  • Lee, Hyang-Sun;Jeon, Jong-Woon;Jo, Mujin;Kee, Seong-Hoon;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.304-310
    • /
    • 2018
  • The aim of the research is to provide possibility of quality controlling by rheological properties for lightweight foamed concrete. The lightweight foamed concrete achieves its low density by containing air bubbles (foam) produced during the mixing process. Therefore, containing foamed volume during setting period is critical for the securing the performance as an insulating material. In this research, regarding foam collapse during the setting period, rheolgocial properties of fresh state lightweight foamed concrete were assessed to get its relationship with volume stability, or foam stability. For the experiment regarding foaming factors including mixing time, mix design of contents for materials, rheological properties of fresh state lightweight foamed concrete were tested with its density and settling depth. Based on the settling depth with various factors, relationship with rheological properties was analyzed, and especially, close relationship of plastic viscosity and settling depth was found. Therefore, from the results of this research, it is considered to contribute on suggesting a new approach of quality controlling for lightweight foamed concrete using rheological test method.

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing;Zhu, Zhiyuan;Liu, Fang;Li, Haoxin;Jiang, Zhengwu
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

A new method to estimate rheological properties of lubricating layer for prediction of concrete pumping

  • Jang, Kyong Pil;Kim, Woo Jae;Choi, Myoung Sung;Kwon, Seung Hee
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.465-483
    • /
    • 2018
  • The most crucial factor determining the pumping performance of concrete is the characteristics of the lubricating layer formed between the pipe wall and the inner concrete. Thus, it is important to accurately identify the rheological properties of the lubricating layer to predict the pumping of concrete. In this study, a new method is proposed for measuring the rheological properties of the lubricating layer with improved convenience. To verify the new method, a pumping test was conducted with 337 m-long horizontal piping. The rheological properties of the lubricating layer were assessed by a previously verified method and the new method proposed in this study for a total of four concrete mixtures with design strength ranging from 27 MPa to 60 MPa. The correlation between the existing method and the new method in relation to the viscosity of the lubricating layer was determined, and it was possible to predict the pumping performance with an accuracy of about 88.5% using the viscosity of the lubricating layer obtained from this correlation.

Fuzzy inference systems based prediction of engineering properties of two-stage concrete

  • Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 2017
  • Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.

The Effects of Superplasticizers on the Engineering Properties of Plain Concrete

  • Park, Seung-Bum
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.29-43
    • /
    • 1999
  • The effects of superplasticizers on fresh and hardened concrete were investigated. The experimental program included tests on the workability and slump loss, bleeding, setting time, air content, compressive, tensile and flexural strength, permeability, shrinkage, freeze-thaw durability and creep deformation. Properties of superplasticized concrete were compared with those of conventional and base concretes. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete. They permitted a significant water reduction while maintaining the same workability. Bleeding of superplasticized concrete was much lower than that of conventional concrete of the same consistency. This indicates that the use of superplasticizers did not affect the tendency of segregation of fresh concrete. The compressive, tensile, and flexural strengths of superplasticized concrete were significantly higher than those of conventional concrete. The permeability and drying shrinkage and creep of superplasticized concrete were less than those of conventional concrete, but there were no significant differences between base and superplasticized concrete. Compared with base concrete, non-air-entrained superplasticized concrete had slightly higher freeze-thaw durability. and superplasticized concrete with an appropriate amount of entrained air Eave even better resistance to freezing and thawing.

  • PDF