• 제목/요약/키워드: Engineering Process Control

검색결과 5,897건 처리시간 0.037초

위치모수를 이용한 로버스트 $\bar{x}$ 관리도의 설계 (Design of Robust $\bar{x}$ Control Chart Using a Location Parameter)

  • 정영배;김연수
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.151-156
    • /
    • 2014
  • Control charts are generally used for process control, but the role of traditional control charts have been limited in case of a contaminated process. Traditional $\bar{x}$ control charts have not been activated well for such a problem because of trying to control processes as center line and control limits changed by the contaminated value. This paper is to propose robust $\bar{x}$ control charts which is considering a location parameter in order to respond to contaminated process. In this paper, we consider $\bar{x}_{\alpha}$, that is trimmed rate; typically ten percent rate is used. By comparing with p, ARL value, the responding results are decided. The comparison resultant results of proposed two control charts are shown and are well contrasted.

Redundant System based PLC Network for High Priority Process

  • Suesut, T.;Numsomran, Prayut Inban. A.;Tipsuwanporn, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.687-690
    • /
    • 2003
  • This paper presents the development of Programmable Logic Controller (PLC) and network to design the redundant control system in order to control the high priority process. The industrial process that cannot be shutdown or the effect of the shutting down takes abundantly damage. In this article, we say that the high priority process. The redundant systems are designed for controlling the high priority process that the control system must have many controllers to instead the main controller when it has some error. This paper we designed the redundancy control system by the advantage of the high-speed communication on the PLC’s network. The temperature control system and the traffic light control system used as the case study. Each example processes consist of two sets of controller. Our scheme we can increase the reliability prevents process down time and reduces the cost of opportunity to loss also.

  • PDF

The Application of Project control Techniques to Process Control: The Effect of Temporal Information on Human Monitoring Tasks

  • Parush, A.;Shtub, A.;Shavit, D.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.10-14
    • /
    • 2001
  • We studied the use of time-related information, with and without prediction, to support human operators performing moni-toring and control tasks in the process. Based on monitoring and control techniques used for Project Management we developed a display design for the process industries. A simulated power plant was used to test the hypothesis that availability of predictions along with information on past trends can improve the performances of the human operator handling faults. Several designs of dis-plays were tested in the experiment in which human operators had to detect and handle two types of faults(local and systems wide) in the simulated electricity generation process. Analysis of the results revealed that temporal data, with and without prediction, signifi-cantly reduced response time. Our results encourage the integration of temporal information and prediction in displays used for the control processes to enhance the capabilities of the human operators. Based on the analysis we proposed some guidelines for the de-signer of the human interface of a process control system.

  • PDF

Estimation of Change Point in Process State on CUSUM ($\bar{x}$, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.139-147
    • /
    • 2009
  • Control charts are used to distinguish between chance and assignable causes in the variability of quality characteristics. When a control chart signals that an assignable cause is present, process engineers must initiate a search for the assignable cause of the process disturbance. Identifying the time of a process change could lead to simplifying the search for the assignable cause and less process down time, as well as help to reduce the probability of incorrectly identifying the assignable cause. The change point estimation by likelihood theory and the built-in change point estimation in a control chart have been discussed until now. In this article, we discuss two kinds of process change point estimation when the CUSUM ($\bar{x}$, s) control chart for monitoring process mean and variance simultaneously is operated. Throughout some numerical experiments about the performance of the change point estimation, the change point estimation techniques in the CUSUM ($\bar{x}$, s) control chart are considered.

자기상관이 있는 장치산업에서 공정 진단 및 부적합품률 제어모형에 관한 연구 (A Study on a Control Model for the Diagnostic and Nonconformity Rate in an Instrumental Process Involving Autocorrelation)

  • 구자활;조진형
    • 산업경영시스템학회지
    • /
    • 제33권1호
    • /
    • pp.33-40
    • /
    • 2010
  • Because sampling interval for data collection tends to be short compared with the overall processing time, in chemical process, instrumental process related tanks or furnace collected data have a significant autocorrelation. Insufficient control technique and frequent control actions cause unstable condition of the process. Traditional control charts which were developed based on iid (independently and identically distributed) among data cannot be applied on the existence of autocorrelation. Also unstable process is difficult to identity or diagnose. Because large-scale process has a lot of measurable variables and multi-step-structures among data, it is difficult to find relation between measurable variables and nonconformity. In this paper, we suggested an appicable model to diagnose the process and to find relation between measurable variables (CTQ) and nonconformity in the process having autocorrelation, unstable condition frequently, a lot of measurable variables, and multi-step-structure. And we applied this model to real process, to verify that the process engineers could easily and effectively diagnose the process and control the nonconformity.

가변 샘플링간격 EPC/SPC 결합시스템의 개발 (Development of Integrated Variable Sampling Interval EngineeringProcess Control & Statistical Process Control System)

  • 이성재;서순근
    • 대한산업공학회지
    • /
    • 제32권3호
    • /
    • pp.210-218
    • /
    • 2006
  • Traditional statistical process control (SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control (EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted by variable sampling interval (VSI) to change sampling intervals in a predetermined fashion on the predicted process levels under integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA (1,1) disturbance model and zero-order (responsive) dynamic system. Properties of twelve control rules under three patterns of process change (sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권3호
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

A Continuous Regional Current-Voltage Model for Short-channel Double-gate MOSFETs

  • Zhu, Zhaomin;Yan, Dawei;Xu, Guoqing;Peng, Yong;Gu, Xiaofeng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.237-244
    • /
    • 2013
  • A continuous, explicit drain-current equation for short-channel double-gate (DG) MOSFETs has been derived based on the explicit surface potential equation. The model is physically derived from Poisson's equation in each region of operation and adopted in the unified regional approach. The proposed model has been verified with numerical solutions, physically scalable with channel length and gate/oxide materials as well as oxide/channel thicknesses.

SPC와 EPC 통합에 관한 조사연구 (AN INVESTIGATIVE STUDY ON THE COMBINING SPC AND EPC)

  • 김종걸;정해운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.217-236
    • /
    • 1999
  • Engineering process control (EPC) is one of the techniques very widely used in process. EPC is based on control theory which aims at keeping the process on target. Statistical process control (SPC), also known as statistical process monitoring. The main purpose of SPC is to look for assignable causes (variability) in the process data. The combined SPC/EPC scheme is gaining recognition in the process industries where the process frequently experiences a drifting mean. This paper aims to study the difference between SPC and EPC in simple terms and presents a case study that demonstrates successful integration of SPC and EPC for a product in drifting industry. Statistical process control (SPC) monitoring of the special causes of a process, along with engineering feedback control such as proportional-integral-derivative (PID) control, is a major tool for on-line quality improvement.

  • PDF

경제적 손실을 고려한 기대손실 관리도의 설계 (Design of Expected Loss Control Chart Considering Economic Loss)

  • 김동혁;정영배
    • 산업경영시스템학회지
    • /
    • 제36권2호
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.