• Title/Summary/Keyword: Engineering Construction

Search Result 24,068, Processing Time 0.047 seconds

Establishing the Strategy of Effective Construction VE for Construction Firms (건설기업 관점의 효과적인 시공 VE 수행을 위한 전략 도출 연구)

  • Park, Chan Young;Yun, Sungmin;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.80-87
    • /
    • 2021
  • Shortage of SOC budget and inappropriate initial construction cost planning have worsened the economic sentiment of the construction firm. Construction VE can be one of the solutions for improving the profitability of construction projects. This study identifies the strong and weak points of construction firms for establishing the strategy of effective construction VE by using importance-performance analysis. As a result, construction firms have strong points on support, cooperation, and knowledge about construction VE, but have weak points on 'VE experience of VE leader', 'Detailed cost estimation', and 'Idea generation and evaluation'. This paper contributes to establishing the strategy of effective construction VE from the perspective of the construction firm, which is differentiated from previous studies that have focused on the institutional approach for construction VE.

Discrete Event Simulation based Equipment Combination Optimization Method - based on construction equipment performance estimation of the Construction Standard Production Rate - (이산형 이벤트 시뮬레이션 기반 최적의 건설장비 조합 도출 방법 제시 - 표준품셈 건설기계 시공능력 산식을 기반으로 -)

  • Ko, Yongho;Ngov, Kheang;Noh, Jaeyun;Kim, Yujin;Han, Seungwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.21-29
    • /
    • 2022
  • Productivity estimation of construction operations is crucial to successful project delivery. Especially in the preconstruction phase, the adequacy and effectiveness of plans directly affect the actual performance of operations. Currently, productivity estimation is conducted by referring to existing references such as the Construction Standard Production Rate. However, it is difficult to promptly apply changing conditions of operations when using such references. Moreover, it is difficult to deduce the optimal combination of construction machinery for the given condition. This paper presents a simple simulation model that can be used to generate productivity data that considers site conditions and construction equipment combination. The suggested method is expected to be used as a decision making assisting tool for practitioners who rely on estimations using the Construction Standard Production Rate when establishing construction plans using heavy machinery such as backhoes, loaders and dumptrucks.

A DEVELOPMENT OF INTELLIGENT CONSTRUCTION LIFT-CAR TOOLKIT DEVICE FOR CONSTRUCTION VERTICAL LOGISTICS MANAGEMENT

  • Chang-Yeon Cho;Soon-Wook Kwon;Tae-Hong Shin;Sang-Yoon Chin;Yea-Sang Kim;Joo-Hyung Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.242-249
    • /
    • 2009
  • High-rise construction sites, especially those situated in spatially constrained urban areas, have difficulties in timely delivery of materials. Modern techniques such as Just-in-time delivery, and use of information technology such as Project Management Information System (PMIS), are targeted to improve the efficiency of the logistics. Such IT-driven management techniques can be further benefited from state-of-the-art devices such as Radio Frequency Identification (RFID) tags and Ubiquitous Sensor Networks (USN), which has resulted in notable achievements in automated logistics management at the construction sites. Based on those achievements, this research develops USN hardware toolkits for construction lifts, which aims to be automated the vertical material delivery by sensing the material information and routing it automatically to the right place. The gathered information from the sensors can also be used for monitoring the overall status. The developed system will be tested in the actual high-rise construction sites to assess the system's feasibility. The proposed system is being implemented using Zigbee communication modules and RFID sensor networks which will communicate with the intelligent palette system (previously developed by the authors). To support the system, a lift-mountable intelligent toolkit is under development. Its feasibility test will be conducted by applying the implemented system to a test bed and then analyzing efficiency of the system and the toolkit. The collected test data will be provided as a basis of autonomous vertical transport equipment development. From this research, efficient management of the material lift is expected with increased accuracy, as well as better management of overall construction schedule benefited from the system. Further research will be expected to develop a smart construction lift, which will eliminate the need for human supervision, thus enabling a real 'autonomous' operation of the system.

  • PDF

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

Construction Safety Training Methods and their Evaluation Approaches: A Systematic Literature Review

  • Ojha, Amit;Seagers, Jonathan;Shayesteh, Shayan;Habibnezhad, Mahmoud;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.188-197
    • /
    • 2020
  • Due to hazardous working environments at complex, unstructured, and dynamic construction sites, workers frequently face potential safety and health risks throughout the construction process. In this regard, addressing safety challenges remains one of the top priorities. Construction workers' ability to identify and assess risks is acquired through training, which is one of the primary key factors to determine their safety and wellbeing in hazardous working environments. As such, safety managers constantly focus on the effectiveness of the training materials provided to the workers. However, the construction workers are considerably at greater risk of injuries and fatalities compared to the workers in other industries. In this regard, further studies are required to build up a body of knowledge on the conventional safety training approaches as well as their evaluation techniques in order to boost up the adoption by the practitioners in a widespread manner. This paper provides a systematic review of the current safety training approaches and the various techniques for measuring their effectiveness. The attributes of the current safety training methods for construction workers and their evaluation techniques are identified and analyzed. Results indicated that: 1) immersive environment-based training methods are effective than the traditional safety training methods; 2) this effectiveness can be empirically supported by evaluation strategies, but the current techniques are subjective, intrusive, and error-prone. This research offers fresh opportunities to investigate the training strategies by objectively monitoring the physiological responses of construction crews. The results of this study can be used by researchers and practitioners to identify and determine optimal safety training programs that could potentially become ubiquitous in the construction industry.

  • PDF

A Markov-based prediction model of tunnel geology, construction time, and construction costs

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Ali, Hunar Farid Hama;Salim, Sirwan Ghafoor;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.421-435
    • /
    • 2022
  • The necessity of estimating the time and cost required for tunnel construction has led to extensive research in this regard. Since geological conditions are significant factors in terms of time and cost of road tunnels, considering these conditions is crucial. Uncertainties about the geological conditions of a tunnel alignment cause difficulties in planning ahead of the required construction time and costs. In this paper, the continuous-space, discrete-state Markov process has been used to predict geological conditions. The Monte-Carlo (MC) simulation (MCS) method is employed to estimate the construction time and costs of a road tunnel project using the input data obtained from six tunneling expert questionnaires. In the first case, the input data obtained from each expert are individually considered and in the second case, they are simultaneously considered. Finally, a comparison of these two modes based on the technique presented in this article suggests considering views of several experts simultaneously to reduce uncertainties and ensure the results obtained for geological conditions and the construction time and costs.

Settlement behaviours and control measures of twin-tube curved buildings-crossing shield tunnel

  • Jianwei, Jia;Ruiqi, Gao;Defeng, Wang;Jianjun, Li;Ziwen, Song;Jinghui, Tan
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.699-706
    • /
    • 2022
  • Settlement control techniques are critical for the safety of shield tunnel constructions, especially for facing complex situations. In this study, the shield tunnel structure from Huaita east road station to Heping Road station in Xuzhou metro No.3 line (China) is taken as engineering background, which has various complex problems of the upper-soft and lower-hard composite stratum conditions, twin curve shield tunnels, and underpass the foundation of the piled raft. The deformation characteristics of shield tunnelling passing through buildings are explored. Subsequently, comprehensive research methods of numerical simulation and field measurement are adopted to analyzing the effectiveness of settlement control by using the top grouting technique. The results show that the settlement of the buildings has obvious spatial characteristics, and the hysteresis effect can be obviously observed in soil deformation caused by shield construction. Meanwhile, the two shield constructions can cause repeated disturbances, reducing the soil deformation's hysteresis effect. Moreover, the shield tunnel's differential settlement is too large when a single line passes through, and the shield construction of the outer curve can cause more significant disturbance in the tunnel than the inside curve. Notably, the proposed process control parameters and secondary topgrouting method can effectively control the deformation of the shield tunnel, especially for the long-term deformation.

On the Analysis of Risk Management for a Utility Construction Work in Plant Projects (플랜트 유틸리티 시공에서 리스크 관리에 관한 연구)

  • Han, Ki-Don;Hur, Jin-Huek;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • From 2000, the world plant market, especially plant developing business related to oil and gas, has been increasing. Domestic construction companies advance to overseas plant construction market actively, and proportioning to this, an importance of utility construction is increasing. However, the project becomes large and high-tech, and many companies experience difficulty of project management due to relatively high risk of overseas construction. In this study, we built the standard process with which domestic company can evaluate the risk of overseas plant utility construction. Primary factors for risk evaluation is derived, classification system is made out, primary factor is analyzed, and counter plan is suggested. And thorough management of risk is performed by risk management organization that manages the risks, risk control methods, reports and monitors through risk sheet and risk action log from the start of project to the end.

  • PDF

STUDY ON THE REASONS FOR OLD AGED APARTMENT REMODELING

  • Kyeong-Seok Chae;Jin-Gu Park;Chan-Sik Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.544-549
    • /
    • 2009
  • Alongside the increasingly larger domestic construction projects is the gradual rise in construction waste. Consequently, serious environmental problems emerge. The increase in demand for housing remodeling due mainly to the increase in national income and improvement of quality of life is the main reason for the increase in construction waste. This study was conducted as the basic study for the prevention and reduction of construction waste generated by apartment remodeling; it aimed at identifying the remodeling items and reasons. Toward this end, this study targeted apartments at least 15 years old and conducted a questionnaire survey to determine the remodeled sections and remodeling reasons. As a result of the questionnaire survey, the bathroom, floor finishing, and kitchen furniture recorded the highest ratios in remodeling. Old materials, aesthetic motivation, and pleasant living space composition were cited as the major remodeling reasons. This study is significant as a basic study for generating environmental and economic profits through systematic waste management. Further studies should develop guidelines suitable for construction waste reduction and recycling in line with the construction and demolition phases in case of remodeling.

  • PDF

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.92-96
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems (e.g., resources constraints, a lack of formalized management structures, low level of management safety commitment etc.). In order to understand causal interdependencies between safety factors at different system levels (regulation, organization, technical and individual), this paper aims to develop a system dynamics (SD) model of safety management in small construction companies. The purpose of the SD model is to better understand why small construction companies have low level of safety performance. A causal loop diagram (CLD) was developed based on literature, with an attempt to map causal relationships between variables. The CLD was then converted into stock and flow diagram for simulation. Various tests were conducted to build confidence in the model's ability to represent the reality. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

  • PDF