• Title/Summary/Keyword: Engineering Characteristics

Search Result 52,045, Processing Time 0.065 seconds

Combustion Characteristics of Fire Retardants Treated Domestic Wood (난연처리 국산 침엽수재의 연소특성 분석)

  • Seo, Hyun Jeong;Hwang, Wuk;Lee, Min Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.9-18
    • /
    • 2017
  • In this study, we measured that fire characteristics of four wood species using indoor finish materials. Wooden specimens were treated with fire retardant chemicals such as diammonium phosphate and potassium carbonate. The wooden specimens are Larix kaempferi, Pinus koraiensis, Cryptomeria japonica, and Chamaecyparis obtusa, which are used for indoor finish. The heat release rate (HRR) values of fire retardant treated woods were confirmed lower than that of untreated woods. For specific details, the HRR values of vacuum impregnated specimens for Pinus koraiensis and Cryptomeria japonica were measured lower than coatings. However, those of Larix kaempferi and Chamaecyparis obtusa showed the opposite effect to it. Total heat release rate values of all wooden specimens, vacuum impregnated were lower than coated specimens.

Breakdown Characteristics for Insulation Design of HTS Transformer in Liquid Nitrogen

  • J.M. Joung;S.M. Baek;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.38-42
    • /
    • 2003
  • HTS transformer is promising one of HTS power applications to be commercialized in the near future. To realize the applications, insulation technology in the coolant, liquid nitrogen, should be established. So breakdown characteristics should be considered at insulation components; turn-to-turn, layer-to-layer, winding-to-winding, were investigated. Firstly breakdown strengths of Kapton films were compared with Kraft paper these are as turn insulator. And next the characteristics of surface flashover on FRP were measured and the influence on breakdown strength of bubble generated with joule heat was discussed with the shape of cooling channel between layers. Finally barrier effect at winding-to-winding was discussed.

The Effect of Butt Gap in Insulation Properties for a HTS Cable

  • D.S.Kwag;Kim, Y.S.;Kim, H.J.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.43-47
    • /
    • 2003
  • For an electrical insulation design of HTS cable, it is important to understand the dielectric characteristics of insulation materials in $LN_2$ and the insulation type. Generally, the electrical insulation of HTS Cable is classified into two types of the composite insulation and solid insulation type. In this research, we selected the insulation paper/$LN_2$ composite insulation type for the electric insulation of a HTS cable, and studied electric insulation characteristics of synthetic Laminated Polypropylene Paper (LPP) in liquid nitrogen ($LN_2$) for the application to high temperature superconducting (HTS) cable. Furthermore, we compared the breakdown characteristics of the butt gap and bended mini-model cable. It is necessary to understand the winding parameter of insulation paper/$LN_2$ composite insulation.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.

Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam

  • Kunbar, Laith A. Hassan;Alkadhimi, Basim Mohamed;Radhi, Hussein Sultan;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for better structural modeling. Governing equations have been derived by utilizing Hamilton's rule with the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale factors.

Analysis of Characteristics in Switched Reluctance Motor According to the Variation of Rotor Shape (회전자 형상 변화에 따른 스위치드 릴럭턴스 전동기의 특성 해석)

  • Lim, S.B.;Park, J.W.;Choi, J.H.;Chun, Y.D.;Kim, Y.H.;Lee, J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.596-598
    • /
    • 2001
  • This paper presents an analysis of the characteristics in switched reluctance motor (SRM). 2D finite element method (FEM) considering the iron saturation and the actual switching circuit of the SRM drive is applied for the dynamic analysis. The influence of the rotor shape on the radial force and torque ripple is investigated and the optimal shape of rotor pole is proposed to enhance the torque. The radial force characteristics acting on the surface of teeth is investigated by using the Maxwell's magnetic stress tensor method.

  • PDF

Numerical Evaluation of Dynamic Transfer Matrix and Unsteady Cavitation Characteristics of an Inducer

  • Yonezawa, Koichi;Aono, Jun;Kang, Donghyuk;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.126-133
    • /
    • 2012
  • The transfer matrix and unsteady cavitation characteristics, cavitation compliance and mass flow gain factor, of cavitating inducer were evaluated by CFD using commercial software. Quasi-steady values of cavitation compliance and mass flow gain factor were obtained first by using steady calculations at various flow rate and inlet cavitation number. Then unsteady calculations were made to determine the transfer matrix and the cavitation characteristics. The results are compared with experiments to show the validity of calculations.

Effect of ramp-type erase pulse waveform on the high Temperature driving characteristics of ac PDP

  • Choi, Joon-Young;Kim, Dong-Hyun;Heo, Jeong-Eun;Ryu, Sung-Nam;Ryu, Jae-Hwa;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.57-60
    • /
    • 2002
  • This paper deals with the effect of ramp-type erase pulse waveform on the high temperature driving characteristics of ac PDP driven by ramp up-down reset waveform. The experimental results show that the discharge characteristics in the reset period are significantly affected by the erase pulse waveform and ambient temperature. The firing voltage is increased with ambient temperature. This can cause misfirings during the sustain period and should be avoided. As one of possible solutions, we propose the optimization of erasing pulse shape.

  • PDF

The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members (경량화 CFRP 부재의 휨 강도와 강성 특성)

  • Yang, In-Young;Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.