• Title/Summary/Keyword: Engine torque

Search Result 594, Processing Time 0.024 seconds

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

Analysis of Torsional Excitation Force of the Vehicle Driveline (차량 동력 전달계의 비틀림 가진력 해석)

  • Kim, Byoung-Sam;Chang, Il-Do;Moon, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1021-1027
    • /
    • 2006
  • Torque fluctuation of an engine and angular velocity variation of a propeller shaft are the main excitation sources in the vehicle driveline. This paper presents brief mechanism of these excitation sources. Equivalent models of these systems are construced to simulate the excitation source. The computer simulation was carried out by ARLA Simul v 6.7 and ARLA-Simstat v 2.3. Results of the simulations show the characteristics of torsional excitation source of the driveline. Experimental setups for engine system and propeller shaft system are constructed with component of the vehicle. Torque fluctuation of the flywheel and angular velocity of the propeller shaft were measured from this experimental setups. Experimental results are compared with simulation results. The results from experimental analysis agree with those from theoretical results.

  • PDF

The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle (운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구)

  • Lee Youngjae;Kim Gangchul;Pyo Youngdug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..

Robust Torque Control for an Internal Combustion Engine with Nonlinear Uncertainty (비선형 불확실성을 갖는 내연기관의 강인한 토크제어)

  • Kim, Y.B.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.43-50
    • /
    • 2009
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved satisfying the demanded objectives. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameter in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, the present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

  • PDF

Analysis of Engine Operation Condition by Using Coastdown Test under Gear Engaged Condition (기어 물림 상태의 타행 주행 저항을 이용한 엔진 운전 조건의 분석)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su;Min, Byeong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-66
    • /
    • 2012
  • Conventional method to transform vehicle driving condition to engine operation mode is to use vehicle road load under neutral gear and mechanical efficiency of drivetrain. But this method requires additional measurement of efficiency of drivetrain on a test rig. And this measurement is normally done at fixed speed and thus estimated accuracy of engine operation mode is not considered to be high enough. This study suggests new method to calculate engine operation mode for prescribed driving mode such as NEDC using vehicle coastdown test under gear engaged condition without measurement of mechanical efficiency of drivetrain. Coastdown test was done under neutral and gear engaged condition for comparison and also trial to extract mechanical loss of drivetrain was carried out. Calculated engine torque by conventional and newly suggested method was compared with actually measured torque of a vehicle on a chassis dynamometer during NEDC. Newly suggested method showed slightly higher accuracy of accumulated brake work during NEDC.

Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty (내연기관의 강인한 토크제어를 위한 제어계 설계법)

  • Kim, Young-Bok;Jeong, Jeong-Soon;Lee, Kwon-Soon;Kang, Heui-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

Performance of 26cc Small Sized Two-Stroke SI Engines on Excess air factor at partial opened carburetor throttle (저개도 카뷰레터 쓰로틀에서의 26cc 소형원동기의 공기과잉율에 따른 성능특성)

  • Choi, Young-Ha;Kim, Byeong-Guk;Choi, Hyung-Mun;Yoon, Suck-Ju;Kim, Dong-Sun;Han, Jong-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.409-412
    • /
    • 2008
  • This paper presents the effects of excess air factors(0.84${\sim}$0.90) and opened throttle area ratios(AR=0.15${\sim}$0.25) on the emission and performance of a small spark-ignition gasoline engine. The engine used in this paper was a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc engine for brush cutter. The rpm, torque, fuel consumption and CO emission were measured under the four different excess air factors and three different opened area ratios conditions on the engine loads respectively. The results showed that the rpm was decreased and torque was increased at increasing load, the maximum power and minimum fuel consumption could be obtained critical rpm on each throttle opened area ratios and brake specific fuel consumption was decreased 13${\sim}$17%, CO emissions was decreased 21${\sim}$38% at excess air factor 0.90 than 0.84.

  • PDF

An Experimental Study on the Performance and the Exhaust Emissions of Gasoline Engine Using Water-Gashol Blends as a Fuel (물-가스홀 혼합물을 연료로 사용한 가솔린기관의 성능 및 배기성분에 관한 실험적 연구)

  • 노상순;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.25-38
    • /
    • 1984
  • Since the energy shock in 1973, there have been wide studies for the developments of the alternative energy source, the rationalization of the energy utilization and the energy economy because of the recognition of the limitation of energy source all over the world. This study is experimentally examined in and compared with the engine performance of output, torque and fuel consumption rate, and the exhaust emissions with the change of engine rmp in the cases of using water-gashol blends, gashol and gasoline as a fuel in a conventional 4 cycle 4 cylinder gasoline engine. In the case of using water-gashol blends, it is installed by the exhaust manifold pipe into the intake manifold, and water is injected from nozzle fitted up the air horn of the carburetor. The results are obtained as follows; 1. In the case of an addition with water, the engine output and the torque are little difference with the case of gasoline. 2. The fuel consumption rate is decreased as compared with the case of gasoline. Especially, the decrease in quantity is remarkable at the low rpm. 3. The exhaust emissions are remarkably decreased as compared with the case of gasoline. Especially, decreases of CO and HC in quantity are remarkable at the low rpm, and a decrease of No/sub x/ in quantity is remarkable at the high rpm. 4. There is a moderate condition of operation because the producing factors of NO/sub x/ and CO, HC are contrary to each other.

  • PDF

Evaluation of Transient Performance of Carburettered Gasoline Engine (과도운전시 가솔린기관의 성능평가)

  • Cho, G.S.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.1-11
    • /
    • 1993
  • An experimental study was carried out to evaluate the characteristics of transient performance of carburettered gasoline engine under rapid accelerating transient driving conditions. In order to evaluate the characteristics of transient performance quantitatively, the concept of dead time $t_d$ response delay time $t_r$ are introduced. Performance parameters such as air mass fiowrate Gat, engine speed N, manifold boost pressure Pb, and output torque T are measured simultaneously during the rapid opening of the throttle valve by the stepping motor. During the rapid opening of the throttle valve, air mass fiowrate Gat is increased immediately without delay time, but response of engine revolution N, and output torque T are delayed. Therefore hesitation, and stumble phenomena are occurred. Dead time $t_d$ and response delay time $t_r$ of engine revolution N, which is extremely delayed comparing to other performance parameters, are respectively 0.2-0.3sec., 3.0-4.6sec., and dead time rate $t_d/{\Delta}t$ and response delay time rate $t_r/{\Delta}t$ are linearly increased with the throttle valve opening rate ${\theta}$ during the acceleration from 12 degree to 20 degree at 1250rpm.

  • PDF